Attila és Tamás leírtak egy érdekes jelenséget, melyben az alagúteffektus makroméretekben történő alkalmazását javasolták. Ezt elolvasva Vferi kedvet kapott a jelenség részletesebb tanulmányozásához, s végzett néhány érdekes kísérletet is. Ezekről Vferi a következőket írta:
Statikus mérések
DC1. Mérés
A mérés célja: A Magyar Tamás és Joubert
Attila által felfedezett és publikált jelenség mérésekkel történő igazolása.
Ezek a mérések 40 V AC fűtőfeszültséggel és folyamatos DC gyorsítófeszültséggel történtek.
A mért elektroncsövekről
Két db PL509 elektroncső állt rendelkezésemre, ezeket 1. és 2. számmal jelöltem.
1. ábra. A PL509-es elektroncső és a próbapanel
A kapcsolási elrendezésről
A csöveket kétféle bekötésben mértem, először a Fénykapun szereplő módon, ez az 1. számmal jelölt kapcsolás. (A Katódot a tápegység negatív pontjára, a G1-et az ampermérőn (A) keresztül a tápegység pozitív pontjára, G2-t, G3-at és az Anódot egymással összekötve. Az 1. feszültségmérő műszert (V1) a katód és anód közé, 2. feszültségmérő műszert (V2) a tápegység pozitív és negatív pontjai közé.)
2. ábra. Az 1. számmal jelölt kapcsolás
A vezérlőrács (G1) nagyon közel van a katódhoz, lényegében benne van a katódból a termikus gerjesztés hatására keletkező elektronfelhőben, ezért az ide kapcsolt pozitív feszültség, még kis feszültségértékek mellett is nagy rácsáramot vált ki. Ezért kipróbáltam egy 2. számmal jelölt kapcsolási változatot, melyben a Katódot és a G1-et összekötöm a tápegység negatív pontjával a G2-t az ampermérőn (A) keresztül a tápegység pozitív pontjával, az anódot a G3-mal. Az 1. feszültségmérő (V1) az anód és a katód közé van kapcsolva, a 2. feszültségmérő (V2) a katód és a G2 közé van kapcsolva.
3. ábra. A 2. számmal jelölt kapcsolás
A műszerekről
Az 1. feszültségmérő (V1) 10 MW belső ellenállású multiméter. Ezzel mértem az anódon keletkezett feszültséget. A 2. feszültségmérő (V2) 1 MW belső ellenállású multiméter. Ezzel mértem a gyorsítófeszültséget.
A mérések előtt - csak a fűtőfeszültség bekapcsolásával - 5 perc ideig bemelegítettem a csöveket, hogy a katód elérje a maximális emisszió képességét.
4. ábra. A mérőkapcsolás és a mérőműszerek
Mérési eredmények
Megmértem a katód-segédrács feszültséget a fűtés bekapcsolt állapotában.
Kapcsolás
|
1.
cső
|
2.
cső
|
Minden elektróda lebeg
|
Uk-g1=-1,2V
|
Uk-g1=-1,2V
|
1.táblázat. A katód és segédrács közötti feszültség
A következő táblázat az anódon mért feszültségeket, a hozzájuk tartozó gyorsítófeszültségeket valamint a rácsáramokat tartalmazza.
Gyorsító |
1.kapcsolás
1.cső |
1.kapcsolás
2.cső |
2.kapcsolás
1.cső |
2.kapcsolás
2.cső |
1,5 V
|
Ig = 16,8 mA Ua = -0,82 V |
Ig = 27 mA Ua = -0,83 V |
Ig = 27 mA Ua = -1,39 V |
Ig = 65 mA Ua = -1,43 V |
2 V
|
Ig = 28,4 mA Ua = -0,78 V |
Ig = 39,8 mA Ua = -0,83 V |
Ig = 81 mA Ua = -1,42 V |
Ig = 159 mA Ua = -1,45 V |
3 V
|
Ig = 55,7 mA Ua = -0,82 V |
Ig = 67 mA Ua = -0,83 V |
Ig = 382 mA Ua = -1,44 V |
Ig = 487 mA Ua = -1,48 V |
4 V
|
Ig = 83 mA Ua = -0,81 V |
Ig = 96,7 mA Ua = -0,83 V |
Ig = 1 mA Ua = -1,44 V |
Ig = 1,1 mA Ua = -1,5 V |
5 V
|
Ig = 109 mA Ua = -0,79 V |
Ig = 129 mA Ua = -0,83 V |
Ig = 2 mA Ua = -1,45 V |
Ig = 1,83 mA Ua = -1,5 V |
7 V
|
-
|
-
|
Ig = 4,7 mA Ua = -1,43 V |
Ig = 3,86 mA Ua = -1,54 V |
10 V
|
-
|
-
|
Ig = 10 mA Ua = -1,44 V |
Ig = 7,77 mA Ua = -1,86 V |
15 V
|
-
|
-
|
Ig = 20,6 mA Ua = -1,55 V |
Ig = 15,47 mA Ua = -3,2 V |
20 V
|
-
|
-
|
Ig = 33,6 mA Ua = -2,34 V |
Ig = 24 mA Ua = -4,3 V |
25 V
|
-
|
-
|
Ig = 48 mA Ua = -3,03 V |
Ig = 37,8 mA Ua = -8,78 V |
30 V
|
-
|
-
|
Ig = 63,2 mA Ua = -5,06 V |
Ig = 47,4 mA Ua = -10,4 V |
40 V
|
-
|
-
|
Ig = 126,5 mA Ua = -12,89 V |
Ig = 98,6 mA Ua = -17,97 V |
60 V
|
-
|
-
|
Ig = 163 mA Ua = -15,76 V |
Ig = 127 mA Ua = -21,3 V |
2. táblázat. Az anódon mért feszültségek, a hozzájuk tartozó gyorsítófeszültségek és a rácsáramok
Megjegyzés:
Az anódon mérhető negatív potenciál a mérés közben ingadozást mutat. El- utána visszaállítva a gyorsítófeszültség értékét, nem mindig ugyanannyi anódfeszültség mérhető.
Az eredmények kiértékelése
DC2. Mérés
A mérés célja:
A méréshez a DC1 mérésnél használt eszközök kerültek alkalmazásra.
A kapcsolásról
A fűtés 40 V AC. A Katód és G1 össze van kötve egymással és a tápegység negatív pontjával. A G2-re mA mérőn (Ig2) keresztül +60 V van kapcsolva. G3 és az Anód össze van kötve egymással és mA mérőn (Ia) keresztül egy 1,5 KW lineáris potenciométer csúszkájával. A potenciométer egyik vége a Katódra, másik vége -25 V-ra van kötve. A potenciométer csúszkája és a katód közé feszültségmérő (U2) csatlakozik.
5. ábra. A DC2. mérés kapcsolása
A mért eredmények
U2
|
Ia (2.cső)
|
Ig2 (2.cső)
|
Ia (1.cső)
|
Ig2 (1.cső)
|
-17,8 V
|
0 mA
|
130,2 mA
|
+1,5 mA
|
163,1 mA
|
-17 V
|
-11,5 mA
|
131,1 mA
|
+1,1 mA
|
163,5 mA
|
-16 V
|
-26,1 mA
|
131,7 mA
|
0,0 mA
|
164,0 mA
|
-15 V
|
-54,6 mA
|
132,3 mA
|
-2,9 mA
|
164,7 mA
|
-14 V
|
-106 mA
|
132,8 mA
|
-8,3 mA
|
165,3 mA
|
-13 V
|
-186 mA
|
133,2 mA
|
-18,3 mA
|
166,2 mA
|
-12 V
|
-362 mA
|
133,7 mA
|
-35,9 mA
|
166,8 mA
|
-11 V
|
-617 mA
|
133,9 mA
|
-68,7 mA
|
167,4 mA
|
-10 V
|
-1mA
|
134,0 mA
|
-135,9 mA
|
168,0 mA
|
-9 V
|
-1,56 mA
|
134,2 mA
|
-280,0 mA
|
168,5 mA
|
-8 V
|
-2,19 mA
|
134,1 mA
|
-505,0 mA
|
169,1 mA
|
-7 V
|
-2,87 mA
|
134,0 mA
|
-790,0 mA
|
169,8 mA
|
-6 V
|
-3,67 mA
|
133,7 mA
|
-1,18 mA
|
170,2 mA
|
-5 V
|
-4,59 mA
|
133,4 mA
|
-1,7 mA
|
170,8 mA
|
-4 V
|
-5,9 mA
|
132,9 mA
|
-2,05 mA
|
171,1 mA
|
-3 V
|
-8,24 mA
|
132,3 mA
|
-2,57 mA
|
171,3 mA
|
-2 V
|
-11,26 mA
|
131,3 mA
|
-3,43 mA
|
171,5 mA
|
-1 V
|
-15 mA
|
129,8 mA
|
-5,44 mA
|
171,3 mA
|
0 V
|
-17,57 mA
|
128,4 mA
|
-7,99 mA
|
170,4 mA
|
3. táblázat. A katódfeszültség és a rácsáramok
A mérés kiértékelése
Továbblépési lehetőségek
A célunk minél kisebb gyorsítóáram mellett minél nagyobb és jobban terhelhető anódfeszültség elérése.
Időközben felvettem a kapcsolatot a cikk szerzőivel, akik sok tapasztalattal és nagy kísérletezési múlttal rendelkező, nagyon készséges, szakemberek. Elmondták, hogy ezzel a témával utoljára több évvel ezelőtt foglalkoztak, akkor több különböző elektroncsővel végeztek méréseket. A hagyományos elektroncsövekkel végzett kísérleteik különböző mértékben mutatták az effektust, de az is nyilvánvalóvá vált, hogy egy, az Ő szempontjaiknak jobban megfelelő elektróda kialakításra és elrendezésre lenne szükség. Ezt egyes TV képcsövek elektronágyújának elektródarendszere közelíti meg a legjobban. Abban az időben -egyéb körülmények miatt- sajnos nem volt lehetőségük elkészíteni a megfelelő kísérleti eszközt és így a jelenség tanulmányozása abbamaradt.
Az elektródák célszerű elrendezését az Alagúteffektus
című eredeti cikkben olvashatjátok, de itt most szöveges formában, Attilával
folytatott beszélgetéseink alapján foglalom össze.
A katód után következik egy vezérlőrács, amivel a kilépő elektronok mennyisége
szabályozható. Ez a képcsövekben is meglévő, közvetlenül a katódot követő
hengeres elektróda. Ha nem akarjuk modulálni az elektronsugarat, akkor a katóddal
célszerű összekötni, egyébként a katódhoz képest negatív feszültség ráadásával
zárható le az elektronok útja.
Ezután egy gyorsító elektróda következik, amire a katódhoz képest pozitív feszültséget kapcsolva az elektronok felgyorsulnak. Az elektroncsövekben (PL509) ez egy vékony huzalokból álló háló, ami az elektronok áramlási irányára merőleges, így a felgyorsított elektronok egy része eltalálja és a rácson keresztül visszatér a gyorsító feszültséget előállító tápegységbe. Ez a mi szempontunkból veszteséget okoz, hiszen betáplált teljesítményt igényel. Más a helyzet a képcsöveknél, ahol a gyorsító elektróda egy, az elektronok haladási irányával párhuzamos tengelyű csődarab, melynek belsejében akadálytalanul haladhatnak. A katód-gyorsító elektróda távolság nem túl kritikus - lehet mm-től cm-ig bármilyen - mert a gyorsítás csak a potenciálkülönbségtől függ, amin az elektron áthalad. A következő elektróda egy árnyékoló lemez, melyet e katód potenciálra célszerű kötni.
Ennek minél közelebb kell kerülnie a gyorsító elektródához és az elektronok minél kisebb furaton át jól fókuszált, vékony sugárban kell hogy itt áthaladjanak. Az elektróda feladata, hogy a gyorsítórácstól távol tartsa az anódra eljutni nem képes elektronokat és hogy a gyorsított elektronokhoz az anód fékező potenciáljának információja csak ezt az elektródát átlépve, minél később jusson el. Ezután következik az anód, ahol az elektronokat összegyűjtjük és elvezetjük a fogyasztóhoz, vagy kondenzátorban tároljuk.
Mivel pillanatnyilag nincs lehetőségünk tetszőleges elektróda elrendezésű csövet készíteni, a kísérleteket gyári képcsövekkel tervezzük elvégezni. A szükséges elektródák a képcsövek nyakában találhatóak, és anódként is ezeket tervezzük felhasználni oly módon, hogy a megfelelő elektróda magasságában a képcső nyakához illesztett, keresztirányú mágneses térrel az elektronokat a megfelelő elektródára kényszerítjük.
Fontos figyelmeztetés
A képcsövekkel való kísérletezés veszélyes dolog!
A szükséges magas feszültségek halálos áramütést okozhatnak, és a képcső külső
mechanikai hatásoktól felrobbanhat. Kísérletképen felrobbantottam egy "robbanásbiztos"
képcsövet. Iszonyú nagyot szól, és minden tele lesz üvegszilánkkal. Mint kiderült
a vonatkozó szakirodalomból, a robbanásbiztosság a képcső elejére vonatkozik,
kísérletezéskor pedig mindig a "hátulját" használjuk.
A kísérleteket mindenki csak a saját felelősségére végezze el, nem felelek
semmiféle anyagi kárért, vagy személyi sérülésért!
Utolsó frissítés dátuma: 2004 november 24.