
������ ����� ��������� ����
�������� �������� ����������
���� � �	���� ��

Application
Report

1995 Digital Signal Processing Products

Printed in U.S.A., August 1995 SPRA039

Engine Knock Detection Using
Spectral Analysis Techniques

With a TMS320 DSP

Thomas G. Horner, Member of Group Technical Staff
Digital Signal Processor Systems—Semiconductor Group

SPRA039
August 1995

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its
customers to obtain the latest version of relevant information to verify, before placing
orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the
specifications applicable at the time of sale in accordance with TI’s standard warranty.
Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the
customer. Use of TI products in such applications requires the written approval of an
appropriate TI officer. Questions concerning potential risk applications should be directed
to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design
and operating safeguards should be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI
warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used.

Copyright 1995, Texas Instruments Incorporated

iii

Contents

INTRODUCTION 1.
What Is Engine Knock? 1.
Knock Sensors 1.

Direct Measurements 1.
Remote Measurements 1.

Knock Detection Overview 2.
Spectral Signature 2.
Adaptation Requirements 2.
Signal Conditioning 2.
Detection Strategies 3.
Control Strategies 4.

DFT-BASED DETECTION METHOD 4.
Signal Conditioning 5.
Detection Strategy 8.
Adaptation Strategy 12.
Implementation Examples 13.

Timing Considerations 13.
Frequency Selection 15.
Analog-to-Digital Converter (ADC) Resolution 16.

TMS320C30 Implementation 16.
Hardware Description 16.
Software Description 17.
Test Results 18.

TMS320C25 Implementation 18.
Hardware Description 19.
Software Description 19.
Test Results 20.

Integration Road Map 20.

MISFIRE DETECTION 21.

REFERENCES 22.

iv

Appendixes

Appendix A: Sample-Rate and Block-Size Search Software 23.

Appendix B: TMS320C30 Implementation Software 29.
Description 30.
Listing 30.

Appendix C: TMS320C25 Implementation Software 40.
Description 40.
Listing 40.

List of Illustrations

1 Algorithm Stages Associated With the Crankshaft Angle 14.

2 TMS320C30-Based Knock Detection System Block Diagram 17.

3 TMS320C30 Floating-Point DSP Knock Detection Program Structure 18.

4 TMS320C25-Based Knock Detection System Block Diagram 19.

5 TMS320C25 Fixed-Point DSP Knock Detection Program Structure 20.

6 DSP Road Map From Knock Detection Subsystem to Full Engine Control 21.

1

ABSTRACT

An efficient method of detecting engine knock using spectral analysis is presented. Multiple single-point
DFTs are used to condition the measured knock signal. Using multiple frequencies in the detection
algorithm provides a better signature of the combustion process and enhances the ability to detect low-level
knock across the entire operating range of the engine. The detection strategy compares the DFT outputs
to a variable reference to determine a knock intensity metric. Unlike currently used techniques, the
algorithm adapts the reference (no-knock condition) to varying engine speeds and loads. An overview of
the knock detection problem and current technology is presented. Implementation examples are included
to aid in developing system-specific hardware and software. Two systems are presented. The first is based
on the TMS320C30 floating-point DSP with software written in C. This system could be used for engine
study and algorithm development. The second, which is more production oriented, is based on a
TMS320C25 fixed-point DSP with software written in assembly language.

INTRODUCTION

What Is Engine Knock?

Modern engine control systems are designed to minimize exhaust emissions while maximizing power and
fuel economy. The ability to maximize power and fuel economy by optimizing spark timing for a given
air/fuel ratio is limited by engine knock. Detecting knock and controlling ignition timing to allow an engine
to run at the knock threshold provides the best power and fuel economy. Normal combustion occurs when
a gaseous mixture of air and fuel is ignited by the spark plug and burns smoothly from the point of ignition
to the cylinder walls. Engine knock, or detonation, occurs when the temperature or pressure in the unburned
air/fuel mixture (end gases) exceeds a critical level, causing autoignition of the end gases. This produces
a shock wave that generates a rapid increase in cylinder pressure. The impulse caused by the shock wave
excites a resonance in the cylinder at a characteristic frequency that is dependent primarily on cylinder bore
diameter and combustion chamber temperature. Damage to pistons, rings, and exhaust valves can result
if sustained heavy knock occurs. Additionally, most automotive customers find the sound of heavy engine
knock objectionable.

Knock Sensors

Implementing a knock detection/control strategy requires sensors to monitor the combustion process and
provide feedback to the engine controller. Knock sensors can be classified in two broad categories: direct
and remote measurements.

Direct Measurements
Pressure sensors measure the pressure inside the combustion chamber of a running engine. This direct
measurement of the combustion process provides the best signal to analyze to detect engine knock.
However, each cylinder requires its own sensor, and individual sensor costs are still relatively high. As a
result, pressure sensors are used primarily in research settings. Currently, Toyota is the only manufacturer
that installs pressure sensors in production engines. Pressure sensor usage will increase in the future as
sensor costs are reduced and automotive companies develop more sophisticated engine control strategies
that monitor the combustion process.

Remote Measurements
Remote measurement sensors use vibrations transmitted through the structure of the engine to detect knock
in the combustion chamber. The signal received by remote sensors can be contaminated by sources other

2

than engine knock, which increases the difficulty of signal detection. This is especially true at higher engine
speeds in which background mechanical vibrations are much higher, effectively reducing the
signal-to-noise ratio. One advantage of using remote sensors is that, with careful placement, only one or
two sensors are required to monitor all cylinders. In addition, the sensors are less expensive, primarily due
to a less harsh operating environment.

Two types of remote sensor are being used today: tuned and broadband. Tuned or resonant sensors are used
in many low-end knock detection systems. Either mechanically or electronically, the sensor amplifies the
magnitude of the signal in the frequency range of the knock-excited resonance (sometimes called the
fundamental frequency). A limitation to this approach is that a different sensor can be required for each
engine type, due to variations in the characteristic frequency. The resulting part number proliferation
increases overall system costs for the manufacturer. To eliminate the cost penalty, sensor bandwidth can
be made wide enough to encompass all expected variations in the fundamental frequency. However, doing
so can possibly decrease system performance.

Broadband sensors have no resonant peaks below the 20-kHz operating range of the knock-detection
system. One sensor works equally well for any engine configuration. Some type of postprocessing is
required to identify the characteristic frequency, placing an additional burden on the signal conditioning
part of the system. Since variations in the fundamental frequency can be expected for different engine
configurations, a programmable solution provides the flexibility to easily modify the frequency range
being monitored with minimal impact on system cost.

Knock Detection Overview

Spectral Signature

When engine knock occurs, a shock wave is generated inside the combustion chamber. The shock wave
excites a characteristic frequency in the engine, which is typically in the 5 kHz–7 kHz range. Cylinder bore
diameter and combustion chamber temperature are the main variables that affect this fundamental
frequency. Variations in the fundamental frequency for a given engine configuration can be as much as
± 400 Hz. Larger diameters and/or lower temperatures result in a lower fundamental frequency.

Signals received by a remote sensor contain additional vibrational modes, which are structural resonances
in the engine excited by the shock wave as it hits the cylinder wall. Typically, two to four additional
frequency peaks are evident between the fundamental frequency and 20 kHz. Each engine structure can
have different higher vibrational modes. Sensor mounting location can affect which modes are detectable
and the amplitude of each with respect to the background mechanical noise.

Adaptation Requirements

An engine-knock detection algorithm must be able to adapt to a number of variables to enable the controller
to generate optimum spark timing so that the engine can run at the knock threshold. As mentioned
previously, the structural design of an engine and the mounting location of the knock sensor(s) affect which
frequency modes are detectable by the sensor. Usually, the transfer function between the cylinder and the
sensor is different for each cylinder. This causes both the relative and absolute magnitudes of the vibrational
modes to be different for each cylinder. A good detection scheme should allow different calibrations for
each cylinder.

Another variable that must be accounted for is changes in nonknocking (reference) signal amplitude due
to the mechanical vibration of the engine at different RPMs. As the engine speed increases, the background
vibration level increases. When a fixed reference is used, a compromise in performance must be made

3

because signal magnitudes that would indicate knock at lower engine RPMs are equal to or less than the
background level at higher engine RPMs. The reference must be set low enough that knock can be detected
at lower RPMs, which limits the algorithm’s ability to function at higher speeds. For this reason, some
knock detection systems are shut off above 4000 RPM, and very conservative spark timings are used to
guarantee that knock will not occur. A good detection strategy should adapt to varying levels of background
vibration levels to allow trace knock to be detected at all engine speeds.

Finally, an engine’s operating characteristics change with time. As an engine wears, tolerances between
components change, which could change the magnitudes of the vibrational modes detected by a remote
sensor. Normal background vibrational levels could be higher for a given engine speed. The signal-to-noise
ratio could decrease at higher engine speeds. A good detection strategy should adjust to changes in daily
operating characteristics to allow reliable identification of trace knock without false triggers.

Signal Conditioning

Knock detection systems must perform some type of signal conditioning prior to executing the detection
strategy. Information about the signal strength in the frequency range(s) excited by knock must be extracted
from the measurement. If a tuned sensor with a very narrow resonant peak about the fundamental frequency
is being used, no further signal conditioning is required. In all other situations, either a filtering technique
(analog or digital) or a spectral estimation technique must be used.

Analog filtering is the predominant method used today, due to its low cost, ease of implementation, and
lack of computational power of the engine controller CPU. The output of a simple analog filter tuned to
the fundamental knock frequency is integrated and sent to the engine control unit (ECU) to execute the
detection strategy. However, now that higher precision and/or multiple frequency ranges are desired, an
analog implementation is becoming cost prohibitive.

Digital filters are starting to become practical as the computational performance of the ECU increases.
Programmability allows the same hardware to be shared across a number of engine configurations.
Reduction in part numbers can provide big cost savings to manufacturers in all steps in a product’s life
cycle. Enhancing filter performance or adding additional frequency ranges can be readily accomplished
as long as the computational limits of the CPU are not exceeded.

Another digital signal conditioning technique is spectral analysis; for example, Fast Fourier Transform
(FFT). An FFT provides a higher level of frequency resolving power than a digital filter. In addition,
multiple frequency ranges are available as the basic output of the FFT. Limited computational throughput
of the ECU and unfamiliarity with the technique have limited its use to research and development. No
current production system uses spectral analysis techniques. The advent of cost-effective digital signal
processors like TI’s TMS320 fixed-point family is making the computational power available to bring
spectral analysis techniques to prominence.

Detection Strategies

Knock detection strategies use the output of a signal conditioning stage to compare with a reference to
determine the presence or absence of knock. Most systems today use windowing to isolate periods during
the cylinder’s firing cycle for analysis when knock is possible. There is a window from approximately 10°
to 70° after top dead center (ATDC) of the piston’s cycle when detonation is most likely to occur for the
firing cylinder. The detection algorithm is run only during this window for that cylinder. By eliminating
possible false trigger sources, such as valve closing, the detection algorithm is more robust. The time this
window is active varies with engine speed from 20 ms at 500 RPM down to 1.25 ms at 8000 RPM. Tracking
changing engine speed to calculate this time variation requires hardware or software overhead for
implementation.

4

An indication of signal strength during the active window period is typically used by the detection
algorithm. Integrating the output of a filter is a common method. The magnitude of the signal strength is
compared with a reference level, which, in nonadaptive systems, must be predetermined during system
development. If the reference level cannot adapt to changes in engine RPM, a compromise must be made.
The reference level must be low enough to prevent sustained knock at low speed, yet high enough to prevent
false triggers at higher engine speed. Today, at engine speeds above approximately 4000 RPM, a
combination of very conservative spark timing maps and shutting off the control strategy is used to
guarantee knock-free operation. This results in less than optimal performance and fuel efficiency at higher
engine speeds, particularly for systems using only fundamental frequency detection. Even at lower engine
speeds, some compromise is required to guarantee that knock is likely occur only during transient
operation.

The tradeoffs between using only the fundamental frequency or the combination of fundamental and
vibration mode frequencies concern the issues of false triggers vs. complexity, available CPU time, and
cost. When multiple frequencies are used, a better signature is available to determine if knock is present.
This effectively increases the signal-to-noise ratio of the system. As a result, either the RPM range for
reliable detection can be extended or the baseline spark timing at lower engine speeds can be advanced to
allow the engine to continuously run closer to the knock threshold.

Control Strategies

Knock control strategies today adjust spark timing to let an engine run at the knock threshold. Look-up
tables are used to obtain a baseline setting for a given speed, load, and temperature. Based on the level of
knock detected, timing can be advanced (no knock) or retarded (knock). The rate of advance or retardation
can also be modified based on knock magnitude and/or offset from the baseline spark timing setting.

The strategies fall into two categories. The simplest strategy, global control, retards the spark timing of all
cylinders by the same amount when any knock is detected. This approach has the advantage that only one
knock value has to be tracked and only one timing control loop needs to be executed. The computational
burden on the CPU is minimized, as are the memory requirements for both data and program. However,
engine performance can be compromised if only one or two cylinders are more likely to knock at a given
operating condition. Since all cylinders’ spark timing is retarded equally, the cylinders not at their knock
threshold are not providing optimal power and/or fuel efficiency.

A more sophisticated strategy is to control each cylinder individually so that all cylinders are running at
the knock threshold and provide the best power and fuel efficiency. To implement this type of control
strategy, knock computations and control updates must be performed individually for each cylinder. The
computational burden and memory requirements are higher than with the global control strategy.

Both control strategies are used today. As automotive manufacturers attempt to improve the emissions,
power, and fuel efficiency of their engines to meet the competition or government regulations, the
individual cylinder control strategy will become predominant. Advanced engine control strategies are
being developed that use torque and/or combustion feedback to optimize the operation of each cylinder
independently for best spark timing, fuel delivery, and possibly valve timing. When these strategies are
implemented, global control will no longer be a viable alternative.

DFT-BASED DETECTION METHOD

An individual cylinder knock detection method has been developed that offers superior performance
compared with analog bandpass filtering, digital bandpass filtering, or FFT techniques. This new method
uses multiple single-point Discrete Fourier Transforms (DFTs) for the signal conditioning step to monitor

5

the fundamental frequency plus the vibrational modes of an engine. The DFT algorithm provides better
frequency discrimination than low-cost analog filters, provides better frequency discrimination and/or less
computational burden on the CPU than digital filters, and is less computationally intensive than an FFT.
In addition, because the computation of the DFT algorithm can be spread over all the samples in a block
of data, it leaves more time to run the detection algorithm before the next cylinder’s data must be processed.

The DFT algorithm can be cost effectively implemented on a TI fixed-point DSP, and that system can
replace currently used lower-performance knock detection systems. As a result of the frequency
discrimination capability of the DFT and the use of multiple frequency ranges, the effective signal-to-noise
ratio is enhanced. In addition, the computational throughput of the DSP allows the reference signal to adapt
in real time to changing operating conditions, such as engine speed. At lower speeds, spark timing can be
advanced closer to the knock threshold because the reference is adjusted to the lower background vibration
levels. It is also possible to resolve a knock signature at higher engine speeds, due to both the multiple
frequency ranges, which give a more distinctive signal, and the adaptive reference, which reduces false
triggers. This ability allows the variable spark timing of the engine to run closer to the knock threshold to
obtain improved power and fuel efficiency.

The following sections present the details of the DFT algorithm, detection strategies, and an adaptation
algorithm for engine speed. Two hardware and software implementation methods for TI TMS320 DSPs
are discussed. One is a high-level-language version for the TMS320C30 written completely in C, which
could be used for research and development. The other is an assembly-language version written for the
TMS320C25, which could be used in a production system. Finally, an integration strategy is described that
shows a road map, starting with the replacement of an existing analog knock detection system interfaced
to an engine ECU with a DSP-based system. The strategy leads to a single-processor solution with
increased features and performance.

Signal Conditioning

A lower-cost broadband knock sensor is used in place of one tuned only to the fundamental frequency to
allow the DFT signal-conditioning algorithm to monitor multiple frequencies. The signal-conditioning
algorithm starts with the basic definition of the single-point direct-form DFT shown in equation (1).

X[k] ��
N – 1

n�0

x[n] · e –j2� k[n] � N (1)

where: k = frequency index
n = sample time index
N = sample block length
X[k] = amplitude of sinusoid at frequency index k
x[n] = time domain representation of a signal

Three variables determine the effective center frequency and bandwidth (frequency discrimination) of a
single-point DFT: sample rate, block size, and indexed frequency. The relationships are:

Nyquist rate :fN � fs�2

Minimum frequency :fmin� fN�N

Indexed frequency :f [k] � k · fmin k : 0, . . . ,N – 1

The Nyquist rate (fN) is one-half the sample rate (fs), which determines the highest frequency that can be
discriminated without aliasing. For instance, the most significant knock frequencies are typically between

6

5 kHz–20 kHz; the sample rate for the knock detection system needs to be at least 40 kHz to prevent
aliasing. This results in a loop time for the signal-conditioning algorithm of no more than 50 µs. A high
computational throughput in the CPU is required to calculate any sophisticated algorithms in such a short
period of time.

The minimum frequency (fmin) that can be discriminated is determined by the sample rate and the block
size. For a given sample rate, the larger the block size, the greater the frequency discrimination of the DFT.
Frequency discrimination can be considered similar to the bandwidth of a filter.

The specific frequencies that can be monitored are determined by the indexed frequency (f[k]) once the
sample rate and block size are set. One of the advantages of a DFT over an FFT is that the block size can
be any length and is not limited to a power of 2. This makes the frequency ranges that can be set using a
DFT more flexible than those set using an FFT. A digital filter can be more adjustable than the DFT, but
it carries the penalty of higher computational overhead and a larger memory requirement than an equivalent
single-point DFT.

The general expression of the DFT allows the input signal x[n] to be complex, but in sampled data systems
like this one for knock detection, the input signal is real. This allows a simplification of the final expression.
In addition, digital processors cannot easily represent complex exponentials, so a different representation
of equation (1) is required. Euler’s relationship between complex exponentials and sinusoids is the starting
point for developing a set of expressions that can be implemented on a DSP:

e–j � � cos� – j sin� (2)

Substituting (2) into (1) and allowing the input signal to be only a real value yields:

X[k] ��
N – 1

n�0

x[n] · �cos�2�[n]k�N� – j sin�2�[n]k�N�� (3)

Expanding the expression into the real and imaginary parts of the computation gives:

X[k] ��
N – 1

n�0

x[n] · cos(2� [n]k�N) – j�
N – 1

n�0

x[n] · sin�2�[n]k�N� (4)

Finally, separating the real and imaginary parts of the computation into individual equations gives forms
that can be easily programmed on a digital processor:

XR[k] ��
N – 1

n�0

x[n] · cos�2�[n]k�N� (5a)

XI[k] ��
N – 1

n�0

x[n] · sin�2�[n]k�N� (5b)

To minimize the computational burden on the DSP, the calculations are spread out over the entire sample
block. Each time a sample is received, one step in the summation is computed, which is an advantage of

7

DFT over FFT implementation. All samples for an FFT must be stored in memory before the calculations
can be performed. The DFT can be calculated one sample at a time because there is no linkage between
samples as there is with the FFT. Even though the FFT is more efficient in total time required when
calculating across all allowable frequency ranges, the DFT makes superior uses of CPU resources when
only a few of the possible frequency ranges are being monitored. The actual form of the difference equation
implemented on the DSP is:

XR[k] � XR[k] � x[n] · cos�2�[n] k�N� (6a)

(6b)XI[k] � XI[k] � x[n] · sin�2�[n] k�N�

These calculations are repeated once every sample period and require two multiplies and two adds per
frequency range monitored, regardless of the sample block length used. Note that only a single sample must
be stored to implement this algorithm. This is one of the advantages of the DFT over a digital filter, such
as a finite impulse response (FIR) filter. Computing one N-tap FIR filter requires that N samples and N
coefficients be stored in memory. N multiplies and N accumulates are required each sample period. The
number of frequency ranges or the frequency discrimination in each range (the number of filter taps) is
much more limited for a given CPU if a filter-based signal-conditioning technique is used, due to the
increased computational burden.

The cosine and sine values used in the DFT computation are best implemented as look-up tables for this
application. Computing the values requires too much time and the memory required to store the tables is
not excessive for the block sizes used for knock detection. To further minimize memory requirements, a
single table can be used with two pointers: one for cosine values and another for sine values. The table is
constructed to contain N elements that define one period of the lowest frequency (fmin) sine wave. Using
this single table, any of the allowable frequencies can be monitored. This is another advantage of DFT over
digital filter implementation. A digital filter has a unique set of coefficients for each frequency monitored,
while the single-point DFT has the “coefficients” as subsets of one N-length table of values for all
frequencies.

When the sample block summation is completed, the magnitude of the signal strength for each frequency
range must be computed. The standard equation for computing magnitude is:

X[k] � XR[k] 2� XI[k] 2� (7)

The detection algorithm develops the knock metric by comparing the current signal strength to the
reference. To simplify the calculations, the square root is not computed, because it does not provide
additional information. Using only the sum of the squares amplifies differences in magnitude, because the
square root function tends to compress the number range. The equation used to compute the relative
magnitude is:

X[k] 2 � XR[k] 2� XI[k]2 (8)

The DFT signal-conditioning algorithm should run for as much of the variable time period from 10° to 70°
ATDC (the knock window) as possible. To make the signal strength calculations consistent, a single block

8

size is used for all engine speeds. The highest engine speed determines the maximum block size that can
be used for a given sample rate. At lower engine speeds, multiple sample blocks are required to span the
knock window. When more than one sample block is used, an outer loop around the core DFT algorithm
is required to select the sample block with the highest magnitude signals. A high-level pseudocode
description of an algorithm to monitor five frequency ranges over multiple sample blocks is shown below:

for (i = 0;i < BLOCKS,i ++)

{

for(n = 0;n ≤ N – 1;n ++)

{

TEST

if (NO SAMPLE), then go to TEST
x0 = SAMPLE

XR[k1] � XR[k1] � x0 · cos�2�k1[n] �N�

XI[k1] � XI[k1] � x0 · sin�2�k1[n] �N�
·
·
·

XR[k5] � XR[k5] � x0 · cos�2�k5[n] �N�

XI[k5] � XI[k5] � x0 · sin�2�k5[n] �N�

}

X [k1]2 � XR[k1]2� XI [k1]2

·
·
·

Xsum� X [k1]2�����X [k5]2

X [k5]2 � XR[k5]2� XI [k5]2

if (X sum > Xmax), then

{

Xsum = Xmax

X [k1]max� X [k1]
2

·
·
·

X[k5]max� X[k5]2

}

}

When the signal conditioning calculations are complete, the signal magnitudes X[k]max are passed to the
detection algorithm.

More complex DFT algorithms can be implemented that use a running magnitude computation technique
rather than the sequential block technique shown above. The sliding-mode DFT and the Goertzel algorithm

9

are two such techniques. Advantages of these algorithms are that they can be used to determine exactly
where, during the ignition cycle, the signal reaches the maximum amplitude. This information can be used
by the detection strategy to more accurately determine the knock severity. The sooner after spark ignition
that engine knock occurs, the more severe the knock and the more aggressive the control response should
be. The disadvantages of these techniques are that the computational overhead is slightly higher and the
data memory requirements increase, because a sample-block-length number of samples (N) must be
retained for the calculations. Only the sequential block technique is discussed in this paper. References [4]
and [5] contain details of the more complex methods.

Detection Strategy

The detection strategy uses the output of the DFT-based signal conditioning software module to develop
the knock intensity metric that will be used by the control strategy. There are several knock detection
strategies that have varying levels of sophistication and computational overhead. A few examples are given
here to demonstrate the range of complexity, starting with the simplest and increasing in complexity. The
strategy of choice is dependent on the specific engine configurations and control strategy implementations.

The simplest strategy is to use only the DFT-generated frequency magnitudes for the detection algorithm.
A more complicated approach is to include the rate of change of the magnitudes, which can be used in
predictive algorithms. A more sophisticated approach is to implement a fuzzy logic control strategy. Since
the combustion process is highly variable from cycle to cycle, statistical methods can be used to compute
trends toward the knock threshold. The magnitude-only approach is presented in more detail.

Magnitude detection strategies can use a number of techniques. One is to count the number of frequencies
from the current measurement that exceed the reference, then use the count to indicate knock intensity. This
is the simplest technique and is a good starting point when first implementing the DFT-based signal
conditioning algorithm. A high-level pseudocode description is shown below:

·
·
·

if (X[k1] max > X[k1] ref), then counter ++

if (X[k5] max > X[k5] ref), then counter ++

KNOCK = counter

Another approach is to weight the count according to which frequency range exceeds the reference. The
weighting can also be varied with engine RPM. For instance, the fundamental frequency and one of the
vibrational modes could carry a higher weight at lower engine speed and a lower weight at higher speed.
In this example, it is assumed that the importance of the frequency ranges is assigned as follows:

Priority Variable Frequency Name

5 range1 7250 Hz Fundamental

2 range2 9475 Hz Vibrational mode #1

4 range3 12325 Hz Vibrational mode #2

3 range4 16000 Hz Vibrational mode #3

1 range5 18775 Hz Vibrational mode #4

A simple weighting scheme is shown below in which the fundamental frequency and vibrational mode #2
have weights that vary with engine speed. The pseudocode shows the initialization and the determination
of the knock intensity metric.

10

� �
������������� �� �������

�� ���� 		��� ����

�

������ � � �� �� �� �� ���

������ � � �� �� �� �� ���

�

����

�

������ � � �� �� �� �� ���

������ � � �� �� �� �� ���

�

������ � � �� �� �� �� ���

������ � � �� �� �� �� ���

������ � � �� �� �� �� ���

·
·
·

/ / Knock intensity metric calculation
counter = 0

if �X [k1]max � X [k1]ref
�, then counter�� range1

·
·
·

if �X [k5]max � X [k5]ref
�, then counter�� range5

KNOCK = counter

The amount by which the frequency magnitude exceeds the reference can be used as additional information
for determining a knock intensity metric and can be integrated into the weighting factor. This metric can
be used to fine-tune the algorithm for detecting trace knock conditions. It requires additional computational
resources to implement. The value of ∆[k] can be different for each frequency being monitored. An
example using pseudocode is shown below. Here, the weights vary for both engine RPM and variation
between the measurement and the reference value.

/ / Initialization of weights
if (RPM = = LO), then
{

range1LO = 0 110 000 000 000 000b / / 06000h
range1HI = 0 111 000 000 000 000b / / 07000h
range3LO = 0 000 110 000 000 000b / / 00C00h
range3HI = 0 000 111 000 000 000b / / 00E00h

}
else
{

range1LO = 0 010 000 000 000 000b / / 02000h
range1HI = 0 011 000 000 000 000b / / 03000h
range3LO = 0 000 010 000 000 000b / / 00400h
range3HI = 0 000 011 000 000 000b / / 00600h

}
range2LO = 0 000 000 000 110 000b / / 00030h

11

range2HI = 0 000 000 000 111 000b / / 00038h
range4LO = 0 000 100 000 000 000b / / 00800h
range4HI = 0 000 101 000 000 000b / / 00A00h
range5LO = 0 000 000 000 000 010b / / 00002h
range5HI = 0 000 000 000 000 011b / / 00003h

·
·
·

/ / Compute reference to measurement difference

�[k1] � X [k1]max – X[k1] ref

·
·
·

�[k5] � X [k5]max – X[k5] ref
·
·
·

/ / Calculate knock intensity metric
counter = 0
if (∆[k1] > ∆[k1] HI), then counter+ = range1HI
else if (∆[k1] > ∆[k1] LO), then counter+ = range1LO

·
·
·

if (∆[k1] > ∆[k5] HI), then counter+ = range5HI
else if (∆[k1] > ∆[k5] LO), then counter+ = range5LO
KNOCK = counter

In some instances, it may be desirable to predict when knock is about to occur and begin to make
adjustments to the control strategy preemptively. The rate of change of the amplitude can be used for this
prediction function, and this predictor can be implemented as a simple difference between the current and
some previous measurement. The greater the time difference, the less effect cycle-by-cycle variations will
have, but the more effect changing the engine speed will have on the result. This technique takes more
computational resources and increases memory requirements, because previous values must be retained
for the calculation. Normalizing the average rate of change over all the ranges can yield the weighting factor
that would be used to adjust the knock intensity metric. The pseudocode for an 8-sample time difference
example is shown below. A two-dimensional array is used to store the current and previously measured
amplitudes for the frequencies being monitored.

/ / Compute rate of change

∆ rate [k1] = ∆[k1, m]max – ∆[k1, m – 8]max
·
·
·

∆ rate [k5] = ∆[k5, m]max – ∆[k5, m – 8]max

12

·
·
·

/ / Normalize the rate of change over frequencies
/ / (∆max is largest possible difference)
∆norm = 1 / ∆max

� ave� 0.2 ·�
5

n�1

� norm · � rate [kn]

·
·
·

/ / Adjust knock metric for amplitude rate of change
if (∆ rate > 0), then

KNOCK = ∆ave ⋅ KNOCK

Using measurements too close together in time in highly variable systems can cause the control response
to become unstable. However, with a carefully designed rate computation, the additional information
provided can allow better control during transient operating conditions when speed and/or load are
changing rapidly. This technique can even be extended to the rate of change of the knock intensity metric
itself.

Adding sophistication to the detection strategy increases the computational burden on the CPU and can
provide only a marginal increase in algorithm performance. Increasing sophistication also requires that the
system designer have a high level of understanding of the knock process in the specific engine family on
which the knock detection system is being implemented. The implementation examples given in a
following section demonstrate one of the simple techniques that make it widely applicable.

Adaptation Strategy

The ability to adapt to changing engine operating conditions, primarily speed and load, greatly improves
the performance of a knock detection system. Less compromise is required in the baseline spark timing,
because the system is able to more accurately determine low-level knock at all engine speeds. Using a TI
DSP provides the computational throughput required to execute both the knock detection and adaptation
calculations in real time over the entire speed range of today’s passenger car engines.

The adaptation technique used in this application report generates the reference signal from a sliding
weighted-average computation. A weighted mean is computed individually for each cylinder and is
updated for each firing cycle. The general form of the weighted mean is:

Y[kn] ��
N–1

m�0

x[k(n – m)]
N

R[kn] � K · Y[kn]

Where: Y[kn] = the mean value of a time history of inputs
x[k(n – m)] = the time history of inputs, where each input is a spectral magnitude
N = the number of elements in the time history
R[kn] = the weighted mean value
K = the weighting coefficient

However, this method for computing Y[kn] requires N multiply/accumulates for each average value. A
more effective computational technique is to add the newest input to the running average and subtract the

13

oldest value. This method requires two multiply/accumulates to compute a new average regardless of the
number of values in the time history. The memory storage requirement increases by 1 (to N + 1 values) due
to the need to store the previous average value. This computational method has the form:

Y [kn] � Y [k(n – 1)]�
x[kn]

N
–

x[k(n – N)]
N

The weighting factor (K) is used in the computation of R[kn] to adjust the reference value so that
cycle-to-cycle variation does not falsely trigger the detection algorithm. Empirical studies put the value
for K at 1.5–2. These values can be different for each cylinder on the same engine due to the effects of sensor
placement and structural dynamics. In addition, the weighting coefficient could be modified in real time
to track changes in engine speed and/or load if cycle-to-cycle variations change. However, at the current
level of control strategy sophistication, the value of investing the additional computational time is probably
marginal. Future systems may require statistical analysis of the combustion signature to adjust for
cycle-to-cycle variation, but the system implementation described in this report does not use them.

A number of conditions must be taken into account when choosing the averaging period. The averaging
period must be long enough that the effects of cycle-to-cycle variations are minimized, but short enough
that changing engine speed or load are not filtered out. Values in the range of 8–16 previous samples have
been used in development systems with considerable success.

Another consideration when implementing an adaptation strategy is how to handle reference updates in the
presence of engine knock. If the reference is updated when knock is occurring, the average value is
contaminated by the higher magnitude signals generated by the knock. Assuming that corrective action by
the ECU eliminates knock within a small number of firing cycles, a simple method of handling adaptation
in the presence of knock can be used: do not update the reference value when knock is detected. This method
is practical, because knock is eliminated and the reference updates can restart before any significant
changes develop in the operating condition of the engine. The technique described in this section uses this
assumption.

For this adaptation strategy to work, there must be a period of time during initialization when nonknocking
operation can be guaranteed. Normally, the strategy initializes the adaptation algorithm during the short
period of time following engine start when the likelihood of knock is very low. Reinitializing the adaptation
algorithm each time the engine is started allows the reference to reflect slowly changing operating
conditions.

Implementation Examples

In this section, two implementation examples are presented. The first is a floating-point solution based on
the TMS320C30 with all the software written in C. This could be used as a research and development
system because of the high computational bandwidth and ease of software development. Due to cost
pressures, a production system most likely needs to be a fixed-point solution. The second implementation
example is based on the fixed-point TMS320C25 with the software written in assembly language.

While presenting the implementation examples, this report explains the rationale for decisions made on
specific structures or variables. This rationale shows how modifications can be made to adapt the concept
to new systems. As background for the examples, a discussion on available computational time, sample
rate, sample block size, and ADC resolution is presented first, followed by details on the specific target
DSPs.

14

Timing Considerations

The amount of time available for the various stages of the algorithm can affect implementation decisions.
The general form of the real-time code for the knock detection software shows the time slots required for
the given modules as a function of crankshaft angle. Figure 1 shows the breakdown.

Cylinder Initialization and
RPM Adaptation

Signal Conditioning
(DFT)

Knock Intensity Metric
and

Reference Adaptation

0° 10° 70° 0°

Crankshaft Angle (CA)

Knock Window

Figure 1. Algorithm Stages Associated With the Crankshaft Angle

A study of the number of cylinders, engine RPM range, sample rate, and sample data block size gives the
information required to start making implementation decisions.

Engines today can have operating speeds from 450 RPM at idle up to almost 8000 RPM. Using an execution
window comprising 60° of the crankshaft angle (10°–70° CA ATDC) for the monitoring period, the
minimum amount of time available to perform the DFT-based signal-conditioning algorithm can be
computed. The minimum period occurs when the engine speed reaches its maximum, or 8000 RPM.

min
8000 revs

· rev
360 CA

· 60 s
min

� 20.83
�s
CA° °

60 CA
knock window

·
20.83�s

CA
� 1.25 ms

knock window
°

°

Even at high engine speeds, there is a significant amount of time available for the signal-conditioning
calculations using a TMS320 DSP. The 40-MHz TMS320C30 has time for 25,000 instruction cycles, and
the 50-MHz TMS320C25 is able to complete 15,625 cycles.

Next, the time available for the detection and adaptation tasks must be determined. This is the amount of
time between 70° ATDC on the monitored cylinder and 0° ATDC on the next cylinder in the firing order,
evaluated at maximum engine RPM. This time period is directly affected by the number of cylinders in the
engine. Today, the majority of engines use a 4-cycle design, which goes through a complete firing sequence
every 720° of crankshaft angle. Most engines have 4, 6, or 8 cylinders, though 3-, 5-, 10-, and 12-cylinder
versions exist. Evaluating a number of engine configurations for the time available for the detection and
reference adaptation algorithms is shown in the following equations:

15

�� 720 CA
firing cycle

�
firing cycle
10 cylinders

� – 70 CA
knock window

� � 20.83�s
CA

� 41.2 �s

�� 720 CA
firing cycle

�
firing cycle
12 cylinders

� – 70 CA
knock window

� � 20.83�s
CA

� –208.3�s° °

° °

�� 720 CA
firing cycle

�
firing cycle
8 cylinders

� – 70 CA
knock window

� � 20.83�s
CA

� 416.7 �s° °

�� 720 CA
firing cycle

�
firing cycle
6 cylinders

� – 70 CA
knock window

� � 20.83�s
CA

� 1.04 ms° °

�� 720 CA
firing cycle

�
firing cycle
4 cylinders

� – 70 CA
knock window

� � 20.83�s
CA

� 2.29 ms° °

°

°

°

°

°

These calculations show that for 12-cylinder and probably 10-cylinder engines there is computational
overlap between the current cylinder’s detection and adaptation tasks and the next cylinder’s initialization.
A method of interleaving the calculations must be implemented for these engine configurations, but such
a method exceeds the scope of this report.

To simplify the example, the assumption is made that the knock detection algorithm is being implemented
on a 6-cylinder engine. This assures enough time to complete all calculations before the next cylinder’s
monitoring period begins. The time budget is now established. There are at least 208.3 µs for the cylinder
initialization and RPM adaptation, 1.25 ms for the DFT-based signal-conditioning routine, and 1.04 ms for
the detection and reference adaptation routines.

Frequency Selection

Next, the sample rate and block size must be selected. These two parameters determine which center
frequencies and bandwidths are possible using the individual single-point DFTs. After defining the
fundamental and primary vibrational mode frequencies, the sample rate and block size are varied until a
good match is obtained.

A simple C program that searches over a specified range of sample rates and block sizes finds the best
matches for a given set of center frequencies. Best match is defined as the combination of sample rate (fs)
and block size (N) that produces the lowest average and lowest difference in standard deviation between
the desired and attainable center frequencies. The program listing is contained in Appendix A. When the
program runs, it queries the user to define the search parameters and then generates a list that shows the
ten best matches.

Tradeoffs on block size, sample rate, and frequency match can then be made, taking into account
computation time (the higher the fs, the less time available between samples) and frequency selectivity (the
larger the N, the narrower the effective bandwidth). The effective bandwidth (BW) can be estimated by:

BW�
fs

4 · N

16

Once the sample rate and block size have been determined, the frequency index numbers that most closely
match the desired center frequencies must be determined. The following C code can be used to list the
available center frequencies versus index number:

fmin�
fs

2 · N
;

for(k� 0; k� N; k��)

f(k)� k · fmin;

Choose the values of k that give the closest matches between f(k) and the desired center frequencies.

Analog-to-Digital Converter (ADC) Resolution

The dynamic range of the external sensor must cover several orders of magnitude. Over the operating range
of an engine, values can vary from less than 40 mV at low RPM without knock to full scale of the sensor
at high RPM and high knock. Full scale ranges typically available are ±10 V, ±5 V, and 0 V–5 V. To cover
this dynamic range, an ADC input system with an effective resolution of 8 bits (±5 V and 0 V–5 V) to 10
bits (±10 V) is required. Higher resolution is beneficial, because it provides a guard band at either extreme,
which can be used for system diagnostics. However, the added resolution increases system cost. Each
system must be evaluated to determine the required resolution for that particular implementation.

An 8-bit ADC can be used, even in systems that require higher resolution, by employing external hardware
gain switching combined with software control and compensation. A software routine can be incorporated
into the input signal-conditioning algorithm to monitor the input signal magnitude and adjust an external
gain stage at the input to the ADC. It also must adjust the signal gain to compensate for the external gain
changes prior to use in the DFT calculations. The internal compensation is inversely proportional to the
external gain adjustment to make the effective input sample dynamic range constant. The implementations
presented here assume that the ADC has adequate dynamic range for the sensor that is used, so no gain
adjustments are required.

TMS320C30 Implementation

A ’C30-based system is ideal for research and development to develop algorithms and determine analog
input system requirements. It is also an excellent platform to use as the sole processor in a high-performance
engine control system. The ’C30 is a 32-bit floating-point processor with two on-chip timers and two serial
ports. The timers are used to determine engine speed and to trigger execution of the signal-conditioning
algorithm. Because of the architectural features and the efficiency of the optimizing C compiler, all the
application software can be written in C.

Hardware Description

A high-level block diagram of a ’C30-based system is shown in Figure 2. The system consists of an analog
input system (containing analog signal conditioning, a multiplexer, and an A/D converter), the
TMS320C30, EPROM, SRAM, processor interface circuitry, and an engine controller (with the
assumption that initial tests simply replace an existing knock detection subsystem).

17

Analog
Input

System

Sensor 1

Sensor 2
Sensor Input

Knock Intensity

Processor
Interface

Control

SRAM

#1 TDC

ALL TDC

EPROM

Engine
Controller

Spark

Fuel

TMS320C30

Figure 2. TMS320C30-Based Knock Detection System Block Diagram

Four input signals are required for this configuration: two for knock measurements and two for timing. The
two sensor signals are from the engine-mounted accelerometers that monitor the combustion process. Two
sensors are used so that one sensor can be put on each bank of a V-configured engine. An in-line engine
would require only a single knock sensor. This is standard practice today for the purpose of obtaining a
satisfactory signal-to-noise ratio. Single-sensor systems for V-bank engines can also be investigated with
this system, but this is not done in this report.

The timing signals are used to compute engine RPM (#1 TDC) and to control when the algorithm runs (ALL
TDC) for each cylinder. The #1 TDC signal occurs every 720° of crankshaft rotation. In addition to being
used to compute engine RPM, this signal is also used to synchronize the algorithm to the cylinder firing
order. The ALL TDC signal occurs every 120° (in the 6-cylinder example) and triggers the algorithm to
run for the next cylinder. It is possible to perform both functions using only the #1 TDC signal, but doing
so requires more computational overhead.

The memory configuration is set up to allow easy changes to the knock detection system software. Slow
EPROM (or EEPROM/Flash) memory is programmed with the current version of the software to be run.
During initialization, the real-time code and variables are transferred from EPROM to zero-wait-state
SRAM or on-chip RAM.

Software Description

Details of the hardware implementation affect how the initialization and input/output code is written.
Therefore, the software in this example is not a complete knock detection system implementation, but is
limited to the core algorithm. The assumption is made that no hardware or software input scaling is required
since such scaling is also implementation specific. Also, a simple indication of knock intensity is passed
to the engine controller in a single word. The algorithm is structured to monitor five frequencies and uses
the simple comparison method (number of monitored frequencies exceeding the reference) for detection.
Tradeoff decisions between speed and code size in this example favor speed to maximize computational
throughput.

Both ’C30 timers are required for this implementation. One is used to determine the engine RPM, which
is required to adjust the delay period from top dead center (TDC) to 10° ATDC and the number of sample
blocks analyzed in the 10°–70° ATDC knock window. Execution of the code to compute engine RPM
computation occurs once per combustion cycle (Cylinder #1 TDC). During the ignition cycles of the
remaining cylinders, this code is bypassed. The other timer is used to control when the DFT algorithm
begins execution at 10° ATDC.

18

Figure 3 shows the structure of the program used with the ’C30 floating-point DSP. The first three modules
are written in assembler. They are used to define the interrupt vectors, initialize the C environment, and
transfer real-time code from EPROM to SRAM or on-chip RAM memory. All remaining modules that
pertain to the algorithm are written in C. Except for the initialization module, all functions reside in
interrupt service routines (ISRs). An external interrupt triggered by the ALL TDC signal drives the cylinder
initialization ISR. This ISR also contains the RPM adaptation code. One of the onboard timers is used to
measure the time to rotate through 720° CA, which is directly proportional to RPM. The other timer is used
to trigger the signal-conditioning and knock detection ISR to run after the adjustable delay time between
0° to 10°ATDC has elapsed. The comments in the program listing in Appendix B discuss more details of
the program’s functionality.

Interrupt
Vectors

Initialize C
Environment

Transfer Real-Time
Code

’C30, System, and
Algorithm Initialization

Cylinder Initialization
ISR

Signal-Conditioning and
Knock Detection ISR

Figure 3. TMS320C30 Floating-Point DSP Knock Detection Program Structure

Test Results
Limited hardware testing has been performed on a ’C30-based platform. Assuming a V6 engine with a
maximum speed of 8000 RPM, a 64-sample block size, and 16 frequencies to monitor, initial indications
are that sample rates of 75 kHz are achievable. Sample rates below 60 kHz will probably be used when the
desired effective bandwidths of the DFTs are taken into consideration. This indicates that a ’C30 with
software written in a high-level language like C is an excellent platform for algorithm development and
system testing.

TMS320C25 Implementation

To put a DSP-based knock detection system into production, a fixed-point DSP would most likely be used
to keep system costs down. The TMS320C25 is the processor chosen for this example. It is the midpoint
of TI’s fixed-point DSP family. This device is a 16-bit fixed-point processor with a single onboard timer.
Depending on the sample rate and the number of frequencies to be monitored in a specific implementation,
a member of the TMS320C1x family might be used. To maximize system efficiency, the software is written
in assembler, which allows the user to best take advantage of the Harvard architecture used in TI’s
fixed-point DSP family.

19

Hardware Description

A high-level block diagram of a possible ’C25-based system is shown in Figure 4. The system consists of
an analog input system (containing analog signal conditioning, a multiplexer, and an A/D converter), the
’C25, the engine RPM timer, processor interface circuitry, and an engine controller (with the assumption
that the initial implementation retains the existing microprocessor).

The primary differences between the ’C30-based system and the ’C25-based system are twofold. First, no
external memory is used, which reduces system cost. Second, a 22–24-bit timer is required to compute
engine RPM (down to 100 RPM). The onboard timer on the ’C25 is used to control the DFT algorithm
execution (see Software Description, page 17, for details). The functionality in the ’C25-based knock
detection hardware subsystem can be integrated into a cDSP (customized DSP) device if the specifics of
a given implementation warrant doing so.

Analog
Input

System

Sensor 1

Sensor 2
Sensor Input

TMS320C25

Knock Intensity

Processor
Interface

Control

Engine RPM
Timer (22-Bit)

#1 TDC

ALL TDC

Engine
Controller

Spark

Fuel

Figure 4. TMS320C25-Based Knock Detection System Block Diagram

Software Description

As in the ’C30 example, the software presented in this example is not a complete knock detection system
implementation but is limited to the core algorithm code. The assumptions made for this implementation
are the same as those made for the ’C30 example — that no hardware or software input scaling is required,
that a simple indication of knock intensity is passed to the engine controller in a single word, that the
algorithm monitors five frequencies, and that a simple frequency comparison method is used for detection.

In the case of the ’C25, tradeoff decisions between speed and code size favor code size to reduce memory
usage. Specifically, the cosine and sine coefficient tables used to compute the DFTs are not precomputed
for the entire sample block. Instead, a single sine wave period one sample block long is used. This saves
(2 × number of frequencies –1) × N memory locations, but costs five instruction cycles per frequency
monitored.

Figure 5 shows the structure of the program used with the ’C25 fixed-point DSP. All modules shown are
written in assembler. An external interrupt triggered by the ALL TDC signal drives the cylinder
initialization ISR. The onboard timer triggers the signal-conditioning and knock detection ISR to run after
the adjustable delay time from 0° to 10°ATDC has elapsed. The comments in the program listing in
Appendix C contain more details of the program’s functionality.

20

Interrupt
Vectors

’C25, System, and
Algorithm Initialization

Cylinder Initialization
ISR

Signal-Conditioning and
Knock

Detection ISR

Figure 5. TMS320C25 Fixed-Point DSP Knock Detection Program Structure

Test Results

The fixed-point implementation is still being developed. Preliminary testing to date has been restricted to
simulation. Again, assuming a V6 engine with a maximum speed of 8000 RPM, a 64-sample block size,
and 16 frequencies to monitor, a sample rate of approximately 50 kHz should be achievable. Reducing the
number of frequencies to ten or fewer should increase the sample rate to over 60 kHz.

The most significant differences in performance between the ’C30 and the ’C25 result from the need to
eliminate external memory on the fixed-point DSP system. Therefore, the large interleaved cosine and sine
coefficient tables constructed in the ’C30 example are not used. Instead of precalculating all coefficients
during initialization, the fixed-point implementation must carry the overhead of coefficient-table pointer
manipulation in the real-time code. This adds at least five instruction cycles for each frequency monitored
to the real-time code that runs between each sample input. If only three frequencies were monitored, the
coefficient-table pointers could be kept permanently in six of the eight auxiliary registers. This would
eliminate four of the five additional instruction cycles of overhead penalty for the ’C25, boosting
performance significantly.

Integration Road Map

The knock detection system based on a TI DSP can be used as a building block to incorporate advanced
capabilities in an engine control system. An implementation road map is shown in Figure 6. The DSP-based
knock detection system is initially used as a coprocessor to the current engine control microprocessor. This
allows new features to be added cost effectively to the ECU with minimal change to existing hardware. The
microprocessor can be retained in the system to perform spark, fuel, idle speed, and evaporative recovery
system actuation while the DSP incorporates new, advanced analysis and control strategy computations.
If additional cost savings are desired, the microprocessor functions can be integrated into the DSP and the
microprocessor can be eliminated from the system.

21

Knock
Detection

Ignition

RPM

TDC

Sensor

COMMs

Spark Control
Fuel Control
Idle Control
Evap Control

Microprocessor

Introduction
DSP coprocessor replaces knock subsystem

Benefit:
A cost-effective method of adding performance not possible with current CPU at minimal charge
to existing hardware

Phase 1

cDSP

Knock Detection
Misfire Detection
Combustion Analysis
Torque Control

RPM

TDC

CAPS
COMMs

Spark Control
Fuel Control
Idle Control
Evap Control
Diagnostics

Microprocessor

Enhancement
DSP coprocessor interfaced to new sensor(s)

Benefit:
A cost-effective method of adding performance not possible with current CPU at minimal charge
to existing hardware

Phase 2

cDSP

RPM

TDC

Sensor

The New Possibilities With
Texas Instruments DSPs

– High Performance

– Cost Effectiveness

– System Integration

– Family Road Map

Pressure

Knock Detection
Misfire Detection
Combustion Analysis
Torque Control

RPM

TDC

CAPS

COMMs
Spark Control
Fuel Control
Idle Control
Evap Control
Diagnostics

Integration
DSP and microprocessor functions combined

Benefit:
Decreased cost and increased reliability

Phase 3
cDSP

RPM

TDC

Sensor

Pressure

Figure 6. DSP Road Map From Knock Detection Subsystem to Full Engine Control

Texas Instruments has the capability to achieve system integration of digital signal processors,
microcontrollers, memory, digital logic, and analog functions on a single chip. The TI integration road map
offers customers the benefits of reduced board space, fewer packages, lower power consumption, and
reduced total cost of ownership for their unique application.

MISFIRE DETECTION

Misfire detection may be possible using a DFT-based algorithm, which would require only minimal change
to the detection part of the system. Misfire is defined as the lack of combustion. When the air/fuel mixture
in the firing cylinder does not ignite, a reduction in excitation of the engine structure occurs, and the signal
received by an external sensor shows a reduction in signal strength in the fundamental or vibrational mode
frequencies. Comparing the signature of a nonfiring cylinder to the computed reference signal may indicate
misfire.

The signal-conditioning algorithm using the DFT is the same for knock or misfire detection; only the
detection part of the algorithm is different. When misfire occurs, the amplitude of one or more of the
monitored frequency ranges is reduced relative to the reference. The change in signal strength when the
cylinder misfires must be determined experimentally. Once this is done, the detection algorithm for knock
just needs to be modified to trigger when the current signal strength is less than, rather than greater than,
the reference magnitude.

22

Unlike knock detection in which corrective action is taken immediately, California’s Onboard Diagnostics
(OBDII) regulations are written to detect the occurrence of misfire as a percentage of 200 crankshaft
revolutions (for system damage) or a percentage of 1000 revolutions (for emission control performance).
This places the additional burden on the system of tracking misfire over a relatively long period before any
action is taken.

Using a signal-strength analysis technique like the DFT algorithm described in the preceding sections
requires only a small additional computational resource to implement both knock and misfire detection.
Two other techniques are widely discussed in the literature. One is accurately measuring crankshaft speed
fluctuation during a cylinder’s ignition cycle and then using a software model to compute engine torque.
Significant computational effort is required to compute the torque using an engine model to correct for
torsional and vibrational dynamics. The other method is to obtain direct torque measurements using a
special sensor (not yet commercially available), which significantly adds to system cost.

Incorporating a system that is able to detect both knock and misfire provides a cost-effective means of
improving performance and fuel economy (knock detection) while complying with government emissions
system monitoring regulations (misfire detection).

REFERENCES
1. C.F. Taylor; The Internal Combustion Engine in Theory and Practice; Vol. 2, pp. 34–85; MIT

Press; 1968.
2. Automotive Handbook, second edition; pp. 289–290, 408–409; Robert Bosch GmbH, publisher;

1986.
3. S.M. Dues, J.M. Adams, G.A. Shinkle; “Combustion Knock Sensing: Sensor Selection and

Application Issues”; SAE Paper 900488.
4. C.S. Burrus, T.W. Parks; DFT/FFT and Convolution Algorithms: Theory and Implementation;

pp. 21–36; John Wiley & Sons; 1985.
5. J.G. Proakis, D.G. Manolakis; Introduction to Digital Signal Processing; pp. 682–726;

Macmillan Publishing; 1988.

23

Appendix A: Sample-Rate and Block-Size Search Software

/* Sample Rate and Block Size Search Routine */
/* */
/* File: FINDFBIN.C Rev: 1.0 */
/* Start Date: 5/7/93 Last Change: 6/9/93 */
/* Written by: Thomas G. Horner */
/* Texas Instruments */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <time.h>

/* PROTOTYPES */
/* */
void define(void);
void file_open(void);
void make_space(void);
void search(void);

/* DEFINITIONS */
/* */

#define list_length 10

/* GLOBAL VARIABLES */
/* */
FILE *fptr;

float *delta;
float *fbin;
float *freq_mean;
float *freq_stddev;
float *fs_list;
float *N_list;

float freq[16];

float dif;
float fmin;
float freqn;
float fs;
float fs_max;
float fs_min;
float fs_range;
float fs_step;
float mean;
float std_dev;
float sum;
float var_sum;

int fs_i;
int nfreq;

int N;
int Ni;
int Nmax;
int Nmin;
int Nover2;
int Nrange;
int Nstep;

/* MAIN FUNCTION */
/* */

/* main() is used for overall system control. */
/* Functions are called which do all the work. */

24

void main(void)
{

file_open();
define();
make_space();
search();

}

/* FUNCTION DECLARATIONS */
/* */

/* Search Parameter Definition */
/* */
/* define() is used to define the search */
/* parameters by questioning the user. */

void define(void)
{
 int i;

 clrscr();

/***** Define search by questioning user. *****/

 printf(“Please answer the following questions to ”);
 printf(“define search parameters.\n”);

 /* Define the number of frequencies to */
 /* search */
 printf(“\nHow many frequencies do you want to monitor (1–16)? ”);
 scanf(“%d”,&nfreq);

 /* Define the frequencies */
 printf(“\nNow enter the frequencies to be \n”);
 printf(“monitored one at a time.\n”);
 printf(“Enter a number between 2000–20000.\n”);
 for(i=0 ; i<nfreq ; i++)
 {
 printf(“\nEnter frequency No.%2d ”,i+1);
 scanf(“%f”,&freq[i]);
 }

 /* Define the block size min/max */
 printf(“\n\nNext enter the sample block size \n”);
 printf(”minimum and maximum values. \n”);
 printf(”Use a number from 32 to 128.\n”);
 printf(”\nEnter the minimum block size. ”);
 scanf(”%d”,&Nmin);
 printf(”\nEnter the maximum block size. ”);
 scanf(”%d”,&Nmax);

 /* Define block size step size */
 printf(”\n\nNow enter the step size to be used ”);
 printf(”to go from the minimum”);
 printf(”\nto the maximum value of block size. ”);
 scanf(”%d”,&Nstep);

 /*Define the sample rate min/max */
 printf(”\n\nNext you are asked to enter the sample rate ”);
 printf(”minimum and maximum values.”);
 printf(”\n Use a number between 40000 and 60000.\n”);
 printf(”\nEnter the minimum sample rate. ”);
 scanf(”%f”,&fs_min);
 printf(”\nEnter the maximum sample rate. ”);
 scanf(”%f”,&fs_max);

25

 /* Define sample rate step size */
 printf(”\n\nNow enter the step size to be used ”);
 printf(”for the sample rate ”);
 printf(”sweep\nfrom the minimum to the maximum value. ”);
 scanf(”%f”,&fs_step);

/***** Initialize parameters for search *****/

 /* Compute block size range */
 Nrange = Nmax–Nmin;

 /* Compute block size search repeats */
 Ni = Nrange/Nstep + 1;

 /* Compute sample rate range */
 fs_range = fs_max–fs_min;

 /* Compute sample rate search repeats */
 fs_i = (int)(fs_range/fs_step) + 1;

 /* Write search definition to output file */
 fprintf(fptr,”\nNmax = %d \n”,Nmax);
 fprintf(fptr,”Nmin = %d \n”,Nmin);
 fprintf(fptr,”Nrange = %d \n”,Nrange);
 fprintf(fptr,”Nstep = %d \n”,Nstep);
 fprintf(fptr,”Ni = %d \n”,Ni);

 fprintf(fptr,”\nfs_max = %5.0f \n”,fs_max);
 fprintf(fptr,”fs_min = %5.0f \n”,fs_min);
 fprintf(fptr,”fs_range = %5.0f \n”,fs_range);
 fprintf(fptr,”fs_step = %5.0f \n”,fs_step);
 fprintf(fptr,”fs_i = %d \n\n”,fs_i);
}

/* File Allocation */
/* */
/* file_open() is used to open any files which */
/* might needed during program execution. */

void file_open(void)
{
 if ((fptr = fopen(”findfbin.dat”, ”w”)) == NULL)
 {
 printf(”error in opening output file #1.”);
 exit(0);
 }
}

/* Array Allocation */
/* */
/* make_space() is used to allocate memory */
/* space for arrays whose length is determined */
/* at runtime. Checks are made to verify that */
/* there is enough memory available. Some of */
/* the arrays are initialized to start values. */

void make_space(void)
{
 int i;

 fbin = (float*)malloc(sizeof(float)*(Nmax/2+1));
 if (fbin==NULL)
 {
 printf(”fbin[] allocation error \n”);
 exit(0);
 }

 delta = (float*)malloc(sizeof(float)*nfreq);
 if (delta==NULL)

26

 {
 printf(”delta[] allocation error \n”);
 exit(0);
 }

 fs_list = (float*)malloc(sizeof(float)*list_length);
 if (fs_list==NULL)
 {
 printf(”fs_list[] allocation error \n”);
 exit(0);
 }
 for(i=0;i<list_length;i++)
 fs_list[i]=0.;

 N_list = (float*)malloc(sizeof(float)*list_length);
 if (N_list==NULL)
 {
 printf(”N_list[] allocation error \n”);
 exit(0);
 }
 for(i=0;i<list_length;i++)
 N_list[i]=0;

 freq_mean = (float*)malloc(sizeof(float)*list_length);
 if (freq_mean==NULL)
 {
 printf(”freq_mean[] allocation error \n”);
 exit(0);
 }
 for(i=0;i<list_length;i++)
 freq_mean[i]=1e+04;

 freq_stddev = (float*)malloc(sizeof(float)*list_length);
 if (freq_stddev==NULL)
 {
 printf(”freq_stddev[] allocation error \n”);
 exit(0);
 }
 for(i=0;i<list_length;i++)
 freq_stddev[i]=1e+04;
}

/* Frequency Bin Search */
/* */
/* search() carries out a search to find the */
/* sample rate and block size that gives */
/* center frequencies closest to the user’s */
/* specifications. The top 10 matches are */
/* listed. The average error and deviation */
/* are used to determine the best match. */

void search(void)
{

 int i,j,k,l,m,n;
 int TESTING;

/* The frequency bin search strategy is to have */
/* an outer loop for sampling frequency and an */
/* inner loop for block size. For a given set */
/* of fs and N: */
/* 1. Compute the frequency bins. */
/* 2. Compare against desired frequencies and */
/* find deltas for closest matches. */
/* 3. Compute delta mean and std. deviation. */
/* 4. Compare against top 10 matches and */
/* update match array if necessary. */

27

 l=0;

/* Search over frequency range and */
/* block size range. */
/* */
for(i=0;i<fs_i;i++)
{

fs = (float)(fs_min+i*fs_step);
for(j=0;j<Ni;j++)
{

l+=1;
N = Nmin+j*Nstep;
Nover2 = N/2;
for(m=0;m<nfreq;m++)
delta[m]=1e+10;

/* Compute min frequency for current */
/* sample rate and block size and */
/* compute frequency bins values. */

fmin = (float)(fs/N);
for(k=0;k<=Nover2;k++)

 {
fbin[k] = k*fmin;

/* Check if new frequency range less */
/* than previous smallest difference */
for(m=0;m<nfreq;m++)
{

dif=abs(fbin[k]–freq[m]);
if(dif<delta[m])

delta[m]=dif;
}

}
}

/* Compute average and std deviation */
sum=0.;
var_sum=0.;
freqn = (float)nfreq;
for(m=0;m<nfreq;m++)

sum+=delta[m];
mean=sum/freqn;
for(m=0;m<nfreq;m++)

var_sum+=(delta[m]–mean)*(delta[m]–mean);
std_dev=sqrt(var_sum/freqn);

/* Update results if better matches */
for(n=0,TESTING=1;(n<list_length)&&TESTING;n++)
{

if(mean<freq_mean[n] && std_dev<freq_stddev[n])
{

TESTING=0;
for(m=list_length–2;m>=n;m––)
{

fs_list[m+1]=fs_list[m];
N_list[m+1]=N_list[m];
freq_mean[m+1]=freq_mean[m];
freq_stddev[m+1]=freq_stddev[m];

}
fs_list[n]=fs;
N_list[n]=N;
freq_mean[n]=mean;
freq_stddev[n]=std_dev;

}
}

}

28

/* Write results to output file */
fprintf(fptr,”\n”);
for(n=0;n<nfreq;n++)
{

fprintf(fptr,”freq%2d=%5.0f \n”,n+1,freq[n]);
}
fprintf(fptr,”\n”);
for(n=0;n<list_length;n++)
{

fprintf(fptr,”N[%2d]=%4d \t”,n,(int)N_list[n]);
fprintf(fptr,”fs[%2d]=%6.0f \t”,n,fs_list[n]);
fprintf(fptr,”mean[%2d]=%6.0f \t”,n,freq_mean[n]);
fprintf(fptr,”stddev[%2d]=%6.0f \n”,n,freq_stddev[n]);

}
}

29

Appendix B: TMS320C30 Implementation Software

This appendix contains software to implement the core elements of the knock detection algorithm for a TI
TMS320C30 DSP. It is not intended to be a complete description of the code required to implement a knock
detection system.

Time-critical code is loaded to on-chip memory block B0. To minimize pipeline conflicts, variables
accessed during the same instruction are located in different memory spaces. Variables required for the
real-time code are split between the heap (dynamically allocated), which is placed in on-chip memory block
B1, and external zero-wait-state SRAM.

The layout of the code is grouped into four sections:
• Definitions

– Function prototypes
– Definitions of constants
– Global variables/pointers defined

• Main
• Interrupt Service Routines (ISR)

– External interrupt #0: c_int0()
– Timer interrupt: c_int09()

• Function Declarations
– Global variable initialization: define()
– Dynamic memory allocation: make_space()

Description

Dynamic Memory Initialization The function make_space() contains the code to dynamically allocate
structures and arrays.

RPM Adaptation The ISR c_int01() contains the RPM adaptation code.

Cylinder Initialization The ISR c_int01() contains the cylinder init code.

DFT Signal Conditioning The ISR c_int09() contains the DFT algorithm.

Knock Intensity Metric The ISR c_int09() contains the knock intensity metric calculation code.

Reference Adaptation The ISR c_int09() contains the reference adaptation code.

30

Listing

/*––*/
/*––*/
/* FUNCTION PROTOTYPES */
/* */
void c_int01(void); /* External Interrupt #1 */
void c_int09(void); /* Timer #1 Interrupt */

:
:

void comp_exp(void); /* Cosine/sine tables */
void define(void); /* Variable Definition */
void make_space(void); /* Memory Allocation */

:
:

/*––*/
/*––*/
/* C LANGUAGE MACROS */
/* */

#define MAX(a,b)(((a) > (b))?(a):(b))
#define MIN(a,b)(((a) < (b))?(a):(b))

/*––*/
/*––*/
/* DEFINITIONS */
/* */

#define pi 3.14159265358979323846

#define clkin 32000000 /* DSP CLKIN rate (Hz) */
#define clk2cnt 4 /* No. clkins / timer count */
#define clk2inst 2 /* No. clkins / instruction */
#define cyl_number 6 /* No. cylinders */
#define fs 55555 /* Sample rate */
#define history 8 /* DFT ave filter length */
#define knockdeg 60 /* Knock window (°CA) */
#define knock_levels 4 /* No. knock metric levels */
#define nfreq 5 /* No. frequencies monitored */
#define nrange 5 /* No. frequency ranges */
#define revprd2deg 1/720 /* Combustion cycles (CC) */

/* per °CA */
#define tdc2knock 10 /* TDC to DFT calc (°CA) */
#define DFT_calc_cnts 1/125 /* tDFT+DFT time (CLKs) */
#define N 45 /* Sample block size */

#define cnt2sec clk2cnt/clkin /* Timer cnt period (sec) */
#define inst2sec clk2isnt/clkin /* Inst cycle time (sec) */
#define rev2delay tdc2knock/720 /* DFT delay per CC */

/*

DFT frequency bin numbers for fs=47 kHz and N=45. These numbers are used to
generate the sine/cosine tables needed for the DFT calculations. The bin
numbers are different for different block sizes, sample rates, and desired
frequencies. If any of these values change, then new bin numbers must be
determined and entered here.

*/
#define nfreq1 6 /* f1 = 6.14 KHz */
#define nfreq2 8 /* f2 = 8.18 KHz */
#define nfreq3 11 /* f3 = 11.25 KHz */
#define nfreq4 14 /* f4 = 14.32 KHz */
#define nfreq5 19 /* f5 = 19.43 KHz */

31

/*

The structure defined here contains the cylinder-specific information which
is used by the time-critical part of the DFT calculations. The definition of
the elements of the structure are:

MAG[] = computed DFT magnitude history array
REF[] b = scaled/averaged DFT array
knock[] = knock metric histogram (diagnostics)

*/

typedef struct cylinder
 {
 float MAG[nrange*(history+1)];
 float REF[nrange];
 float knock[knock_levels];
 } cyl_type, *cyl_pntr;

typedef unsigned short UINT; /* Shorthand definition */

/*––*/
/*––*/
/* GLOBAL VARIABLES */
/* */

/* Create array of structures (1/cyl) */
cyl_pntr cyl_list[cyl_number];

/* Create pointers to elements of structure */
cyl_pntr cp;
float *Mag_p;
float *Mag_p_src;
float *Mag_p_dst;
float *REFp;
float *kp;

/* Create pointers to arrays in dynamic memory (heap) */
float *tDFT_p; /* Intermediate |DFT| array */
float *DFT_p; /* Final |DFT| array */
float *real_p; /* DFT[real] sum */
float *imag_p; /* DFT[imag] sum */

/* Allocate arrays for external SRAM memory */
float real_exp[N]; /* Base cosine table array */
float imag_exp[N]; /* Base sine table array */
float real_table[(nfreq)*N]; /* Interleaved cosine table array */
float imag_table[(nfreq)*N]; /* Interleaved sine table array */
float K[cyl_number][nrange]; /* Gain array used for REF[] calc */

/* Allocate global variables*/
float delay; /* Delay period in Timer counts */
float fs; /* Sample rate (Hz) */
float k_nblocks; /* Conversion of Timer cnts to */

/* sample blocks / cylinder */
float rev2knock; /* CC degrees / knock degrees */
float DFT_loop; /* Number Timer cnts / DFT calc loop */
float DFT_calc; /* Number Timer cnts / max DFT */

/* update loop */

/*

Offset pntr into base sine/cosine tables, which is used to construct the
interleaved sine/cosine tables. Each frequency being monitored requires
separate pointer into base tables.
/
int offset1;

32

int offset2;
int offset3;
int offset4;
int offset5;

int level_cntr; /* Counter of DFT>REF for cyl */
int nrpm; /* Number RPM from RESET */
int ncyl; /* Current cylinder pointer */

/*–––*/
/*–––*/
/* MAIN FUNCTION */
/* */
/*

Function main() is used for overall system control. It calls the functions
that do the initialization and setup tasks.

*/
void main(void)
{

:
:

 comp_exp(void);
 define();
 makespace();

:
:

 for (;;)
; /* Infinite WAIT loop. All real-time */

/* code in interrupt routines. */
}

/*––*/
/*––*/
/* INTERRUPT SERVICE ROUTINES */
/* */

:
:

/*––*/
/* INT0 ISR */
/*
Function c_int01() is the INT0 ISR, which is triggered by the ALL TDC signal.
The software always initializes Timer 0 Interrupt after the engine RPM calc
has stabilized (delay period needs to be known before DFT calcs started). If
CYL=1 (ncly=0), then delay period and nblocks are updated, otherwise those
blocks of code are bypassed.
*/
void c_int01(void)
{

UINT *mem_pntr; /* Pntr to memory */
float *sum_p; /* Pntr to |DFT| array */
int i; /* Counter */

/*
Determine if CYL #1 by checking #1 TDC signal (LOW = yes). If yes, then read
720 ° CA period and run RPM adaptation routine.

*/
mem_pntr = (UINT *) READ_#1_TDC;
temp = *mem_pntr;
if (temp == 0)
{

mem_pntr = (UINT *) T1_CNTR; /* Read 720 ° period */
T1cnts = *mem_pntr;
mem_pntr = (UINT *) T1_CNTL; /* Reset Timer 1 & */

33

mem_pntr = TIMER_RUN; / restart counter */
nblocks = (int) T1cnts*k_nblocks; /* Update nblocks */
if(nblocks==0) nblocks = 1; /* nblocks ≠ zero */
delay = T1cnts*rev2delay; /* Update delay and */
mem_pntr = (UINT *) T0_PRD; /* Timer 0 PRD */
mem_pntr = delay; / (for next cyl) */
ncyl = 0; /* Reset cyl cntr */

}
/* Cylinder initialization */

cp = cyl_list[ncyl]; /* Create pointers to */
Mag_p = cp –> MAG; /* structure for current */
REFp = cp –> REF; /* cylinder */
kp = cp –> knock;

sum_p = DFT_p; /* Init final |DFT| array */
for (i=0 ; i<nfreq ; i++) /* to zero */

 *sum_p++ = 0;
}

/*––*/
/* TIMER 0 ISR */
/*
Function c_int09() is the TIMER 0 ISR which is triggered at the end of Timer
0 count down period (10 °CA). All DFT algorithm routines are run in this ISR.
Communications of knock intensity to ECU also occurs in this ISR.
*/
void c_int09(void)
{

UINT *mem_pntr; /* Pntr to C30 memory */
float *rtable_p; /* Pntr to cos table */
float *itable_p; /* Pntr to sine table */
float *rvar_p; /* Pntr to DFT real sum */
float *ivar_p; /* Pntr to DFT imag sum */
float *tsum_p; /* Pntr to intermediate |DFT| */
float *sum_p; /* Pntr to final |DFT| */
float temp; /* Storage for ADC input */
int i,j; /* Counters */

/* Init ISR */
reset_T0_ie(); /* Reset T0 enable bit in IE */
mem_pntr = (UINT *) Ain_DATA; /*Point to ADC I/O Port */

/*

34

Start of outer loop of DFT real-time calculations. This loop is run once for
each sample block that is computed. It initializes inner loop variables, and
computes intermediate and final |DFT|s.
*/

for (j=0 ; j<nblocks ; j++)
{

rvar_p = real_p; /* Zero DFT real/imag */
ivar_p = imag_p; /* sums. There is one */
for (i=0 ; i<nfreq ; i++) /* real/imag pair for */
{ /* each frequency being */

rvar_p++ = 0; / monitored. */
*ivar_p++ = 0;

}
rtable_p = real_table; /* Init pointers to */
itable_p = imag_table; /* interleaved sine and */

/* cosine tables. */
tsum_p = tDFT_p; /* Init pointers to */
sum_p = DFT_p; /* intermediate and */

/* final |DFT| arrays. */
clr_int2(); /* Clear INT2 bit in IF */

/* to init ADC polling */
/*
Start of inner loop of DFT real-time calculations. This loop is run once per
sample and computes the real/imaginary DFT running sums. It is reinitialized
for every sample block. The ADC sampling is polled rather than
interrupt -driven to save interrupt latency time.
*/

for (i=0 ; i<N ; i++)
{

wait_int2(); /* Wait for INT2 flag */
ADC_in = *mem_pntr; /* Read ADC */
clr_int2(); /* Clear INT2 IF */
temp = (float) ADC_in; /* Convert to float */
rvar_p = real_p; /* Init pntrs to DFT */
ivar_p = imag_p; /* real/imag running */

/* sums. */
/*
This section computes the real and imaginary parts of the DFT. Inline code is
used to increase execution speed. Perform real/imag 2 mults and 2 adds for
each frequency being monitored.
*/

*rvar_p++ += temp * *rtable_p++; /* Freq #1 */
*ivar_p++ += temp * *itable_p++;
*rvar_p++ += temp * *rtable_p++; /* Freq #2 */
*ivar_p++ += temp * *itable_p++;
*rvar_p++ += temp * *rtable_p++; /* Freq #3 */
*ivar_p++ += temp * *itable_p++;
*rvar_p++ += temp * *rtable_p++; /* Freq #4 */
*ivar_p++ += temp * *itable_p++;
*rvar_p += temp * *rtable_p++; /* Freq #5 */

 *ivar_p += temp * *itable_p++;
}

/* Completed inner loop */
/*
This section computes the intermediate |DFT|^2 for the current sample block
and determines final |DFT|^2 for all sample blocks for current cylinder
firing. The |DFT|^2 is used instead of |DFT| to save CPU processing time. The
tests made to determine knock intensity are looking for changes, so do not
require mathematical definition of |DFT| to function correctly.
*/

rvar_p = real_p; /* Reinit pointers to */
ivar_p = imag_p; /* real/imag DFT sums. */

/* Intermediate |DFT|^2 */

35

*tsum_p++ = *rvar_p * *rvar_p++ + *ivar_p * *ivar_p++;
*tsum_p++ = *rvar_p * *rvar_p++ + *ivar_p * *ivar_p++;
*tsum_p++ = *rvar_p * *rvar_p++ + *ivar_p * *ivar_p++;
*tsum_p++ = *rvar_p * *rvar_p++ + *ivar_p * *ivar_p++;
*tsum_p = *rvar_p * *rvar_p + *ivar_p * *ivar_p;

/* Final |DFT|^2 */
tsum_p = tDFT_p; /* Init pntr to int |DFT| */
*sum_p++ = MAX(*sum_p,tsum_p[0]);
*sum_p++ = MAX(*sum_p,tsum_p[1]);
*sum_p++ = MAX(*sum_p,tsum_p[2]);
*sum_p++ = MAX(*sum_p,tsum_p[3]);
*sum_p = MAX(*sum_p,tsum_p[4]);

 }
/* Completed outer loop */

/*
Compute knock metric. This is simple direct comparison method. Each monitored
frequency range is compared against the adaptive reference. The knock metric
is the number of frequency ranges that the measured magnitude is higher than
the reference magnitude.
*/

level_cntr = 0; /* Init cntr for knock tests */
if(DFT_p[0] > REFp[0]) level_cntr++; /* Test DFTn>REFn for all ranges */
if(DFT_p[1] > REFp[1]) level_cntr++;
if(DFT_p[2] > REFp[2]) level_cntr++;
if(DFT_p[3] > REFp[3]) level_cntr++;
if(DFT_p[4] > REFp[4]) level_cntr++;
kp = level_cntr;

/*
If revs > rev_count then, the knock intensity metric is valid so output to
ECU is enabled.
*/
 if(knock_out_flag)
 {
 mem_pntr = (UINT *) WRITE_PA1;
 *mem_pntr = kp;
 }
/*
This section tests level_cntr to determine if knock has occurred. If no, then
new scaled average magnitudes (REF) are computed and the arrays in structure
holding past values (MAG) are updated.
*/
 if (level_cntr == 0)
 {
/* Copy measured magnitudes into history array in structure */
 Mag_p[0] = DFT_p[0];
 Mag_p[1] = DFT_p[1];
 Mag_p[2] = DFT_p[2];
 Mag_p[3] = DFT_p[3];
 Mag_p[4] = DFT_p[4];
/* Move Mag[n]’s back one time step in array */
 for (i=0 ; i<history ; i++)
 {
 Mag_p_dst = Mag_p + ((history-i)*nrange);
 Mag_p_src = Mag_p_dst – nrange;
 for (j=0 ; j<nrange ; j++)
 Mag_p_dst[j] = Mag_p_src[j];
 }
/*
Compute new scaled average magnitude. The reference is the scaled average of
the last 8 non-knocking events. A unique scaling factor is used for each
frequency range of each cylinder.
*/

36

for (i=0 ; i<nrange ; i++) /* Zero REF array */
REFp[i] = 0;

for (i=0 ; i<nrange ; i++) /* Compute new REF for all */
{ /* the frequency ranges. */

for (j=1 ; j<=history ; j++)
{

REFp[i] += Mag_p[(j*nrange)+i];
}
REFp[i] = 0.125 * REFp[i];
REFp[i] = K[ncyl][i] * REFp[i];

}
ncyl++; /* Increment cylinder counter */

}

/*––*/
/*––*/
/* FUNCTION DECLARATIONS */
/* */

:
:

/*––*/
/* Define Complex Exponential */
/* */
/*
Function comp_exp() computes the complex cos (real) and sin (imag) table
arrays and then constructs the interleaved tables used for the DFT
calculations. Block size determines the table length.
*/
void comp_exp(void)
{
 int j,k; /* Counters */

/* This section computes the base sine/cosine arrays which are N long. */
 for (j=0 ; j<N ; j++)
 {
 real_exp[j]=cos(2*pi*j/N);
 imag_exp[j]=sin(2*pi*j/N);
 }
/*
This section constructs the interleaved sine/cosine arrays from the base
arrays. This was done to save the time required to manage numerous circular
buffers during the real-time code execution. It is feasible in an
experimental system because of the extra memory available on the C30 board.
The interleaved arrays are each nfreq*N long. The method used to manage the
pointer to the base arrays works with any block length N.
*/
 for (j=0 ; j<N ; j++)
 {
 k=j*nfreq; /* Init offset pointer */

 real_table[k] = real_exp[offset1];
 imag_table[k] = imag_exp[offset1];
 offset1 += nfreq1;
 if (offset1 >= N)
 offset1 –= N;
 k ++;

 real_table[k] = real_exp[offset2];
 imag_table[k] = imag_exp[offset2];
 offset2 += nfreq2;
 if (offset2 >= N)
 offset2 –= N;
 k ++;

 real_table[k] = real_exp[offset3];
 imag_table[k] = imag_exp[offset3];

37

 offset3 += nfreq3;
 if (offset3 >= N)
 offset3 –= N;
 k ++;

 real_table[k] = real_exp[offset4];
 imag_table[k] = imag_exp[offset4];
 offset4 += nfreq4;
 if (offset4 >= N)
 offset4 –= N;
 k ++;

 real_table[k] = real_exp[offset5];
 imag_table[k] = imag_exp[offset5];
 offset5 += nfreq5;
 if (offset5 >= N)
 offset5 –= N;
 }
}

:
:

/*––*/
/* Global Variable Initialization */
/* */
/*
Function define() is used to define the initial values of global variables.
*/
void define(void)
{

 ADC_in = 0;
 knock_out_flag = 0;
 level_cntr = 0;
 ncyl = 0;
 nrpm = 0;

:
:

/*
NOTE: This section initializes the Kn’s for each cylinder separately. If the
number of cylinders for the engine is not 6 (current value of cyl_number),
then the number of the Kn sets below has to be modified to match.
*/

K[0][0] = 2.; /* [Cylinder #1] [Range #1] */
K[0][1] = 2.; /* [Range #2] */
K[0][2] = 2.; /* [Range #3] */
K[0][3] = 2.; /* [Range #4] */
K[0][4] = 2.; /* [Range #5] */

K[1][0] = 2.; /* Cylinder #2 */
K[1][1] = 2.;
K[1][2] = 2.;
K[1][3] = 2.;
K[1][4] = 2.;

K[2][0] = 2.; /* Cylinder #3 */
K[2][1] = 2.;
K[2][2] = 2.;
K[2][3] = 2.;
K[2][4] = 2.;

K[3][0] = 2.; /* Cylinder #4 */
K[3][1] = 2.;
K[3][2] = 2.;
K[3][3] = 2.;
K[3][4] = 2.;

K[4][0] = 2.; /* Cylinder #5 */
K[4][1] = 2.;

38

K[4][2] = 2.;
K[4][3] = 2.;
K[4][4] = 2.;

K[5][0] = 2.; /* Cylinder #6 */
K[5][1] = 2.;
K[5][2] = 2.;
K[5][3] = 2.;
K[5][4] = 2.;

:
:

/* This section computes a coefficient ”k_nblocks” which is multiplied */
/* the variable ”T1cnts” (720 crank angle degrees period) to determine */
/* the number of sample blocks to use for the current engine RPM. The */
/* calculation is defined below: */
/* */
/* */
/* */
/* CNT2SEC */
/* K_NBLOCKS = REV2KNOCK * ––––––––––––––––––––– */
/* (DFT_LOOP + DFT_CALC) */
/* */
/* */
/* */
/* WHERE: */
/* */
/* */
/* REV2KNOCK: Fraction of Combustion Cycle (720 deg) that knock window */
/* exists for a single cylinder. */
/* */
/* revprd 60 deg */
/* ––––––– * –––––––– */
/* 720 deg knockprd */
/* */
/* */
/* */
/* */
/* CNT2SEC: Number of seconds per Timer count. */
/* */
/* 4 clkins/T1cnt */
/* –––––––––––––– */
/* 32M clkins/sec */
/* */
/* */
/* */
/* */
/* DFT_LOOP: Number of seconds required for inner loop for given sample */
/* rate and sample block size. */
/* */
/* N samples 1 sec */
/* ––––––––– * –––––––––– */
/* 1 block fs samples */
/* */
/* */
/* */
/* */
/* DFT_CALC: Number of seconds required to compute |DFT|^2 and select */
/* the largest value. This number is approximate and is */
/* determined experimentally. If the technique to calculate */
/* magnitude or select max value is changed the time required */
/* for this section should be checked and modified. */
/* */
/* 340 inst 2 clkins/inst */
/* –––––––– * –––––––––––––– */

39

/* block 32M clkins/sec */
/* */
/* */

 rev2knock = revprd2deg*knockdeg;
 DFT_loop = N/fs
 DFT_calc = DFT_calc_cnts*inst2sec;
 k_nblocks = rev2knock*(cnt2sec/(DFT_loop+DFT_calc));

}

/*––*/
/* Array Allocation */
/* */
/*
Function make_space() is used to allocate memory space for arrays whose
length is determined at runtime. The values of the variable arrays in the
structure are initialized also. The dynamic memory allocation stores the
variables on the heap (ON -CHIP RAM BLK1) and accesses them using pointers.
This method is used to speed execution time of knock intensity metric.
*/

void make_space(void)
{

int i,j,k;

/* Allocate structure */
for (i=0 ; i<cyl_number ; i++)

cyl_list[i] = (cyl_pntr)malloc(sizeof(cyl_type));
/* Initialize structure */

for (i=0 ; i<cyl_number ; i++)
{

cp = cyl_list[i]; /* Create pointers */
Mag_p = cp –> D;
REFp = cp –> REF;
kp = cp –> knock;
for (j=0 ; j<knock_levels ; j++)

kp[j] = 0.; /* Init knock histogram */
for (j=0 ; j<nrange ; j++)
{

/* Init Mag’s & REF’s large pos. number. */
for (k=0 ; k<=history ; k++)
{

Mag_p[(k*nrange)+j] = 1.0e+37;
}
REFp[j] = 2.0*Mag_p[j];

}
}

/* Allocate dynamic arrays */
tDFT_p = (float*)malloc(sizeof(float)*nfreq);
DFT_p = (float*)malloc(sizeof(float)*nfreq);
real_p = (float*)malloc(sizeof(float)*nfreq);
imag_p = (float*)malloc(sizeof(float)*nfreq);

}

40

Appendix C: TMS320C25 Implementation Software

This appendix contains software to implement the core elements of the knock detection algorithm for a TI
TMS320C25 DSP. It is not intended to be a complete description of the code required to implement a knock
detection system.

The fixed-point implementation is intended to present code that is more appropriate for a production
environment than the code in the ’C30 example. It is not as easily configurable because it is assumed that
most constants are finalized and don’t need to be changed as often as in a development system. Many of
the constants and variables computed in the ’C30 example must be defined by the user in this one.

The layout of the code is grouped into three sections:
• Definitions

– Definitions of constants
– Global variables/pointers defined

• Main
– Global variable initialization

• Interrupt Service Routines (ISR)
– External interrupt #0: int0
– Timer interrupt: tint

Description

Algorithm Initialization The main routine contains the algorithm initialization code.

RPM Adaptation The INT0 ISR contains the RPM adaptation code.

Cylinder Initialization The INT0 ISR contains the cylinder init code.

DFT Signal Conditioning The TIMER ISR contains the DFT algorithm

Knock Intensity Metric The TIMER ISR contains the knock intensity metric calculation code.

Reference Adaptation The TIMER ISR contains the reference adaptation code.

Listing

*––
*––
* DEFINITIONS
*
ENABLE_int0 .set 01h ;OR value w/ IMR to enable ext interrupt #0
DISABLE_int0 .set 0fffeh ;AND value w/ IMR to disable ext interrupt #0
ENABLE_tint .set 08h ;OR value w/ IMR to enable timer interrupt
DISABLE_tint .set 0fff7h ;AND value w/ IMR to disable timer

N .set 44 ;Sample block size
c_offset .set N/4 ;Offset to start of cosine wave
nfreqs .set 5 ;Number of monitored frequencies
cyl_num .set 6 ;Number of cylinders
history .set 8 ;DFT average filter length
power .set 3 ;2^power = history
shift .set 16 -power ;scaling for ave mag calculation

41

* The constant array_size defines the amount of memory required to
* store the individual cylinder data. The total amount of space
* available on -chip is 384 words. Each cylinder contains the
* following arrays:
* K[nfreqs]
* REF[nfreqs]
* MAG[nfreqs*history]
* The constant cyl_size defines the number of memory locations for
* each cylinder. It is used to compute the constant array_size and
* to generate pointers into the array.
*
* The total number of memory locations required for this example is
* shown here:
* array_size = 6*(2*5+5*8) = 300
*
cyl_size .set 2*nfreqs+nfreqs*history
array_size .set cyl_num*cyl_size

* Gain factors for K[] arrays. This example assumes the gain for each
* frequency is the same for each cylinder across the entire operating
* range. Might not be true in all cases.
*
K0 .set 6
K1 .set 2
K2 .set 4
K3 .set 5
K4 .set 4

* DFT frequency bin numbers for fs=47 KHz and N=45. These numbers
* are used to modify the sine/cosine table pointers needed for the
* DFT calculations. The bin numbers are different for various
* block sizes, sample rates, and desired frequencies. If any of
* these values change, then new bin numbers must be determined and
* entered here.
*
nfreq0 .set 6 ; f1 = 6.14 KHz
nfreq1 .set 8 ; f2 = 8.18 KHz
nfreq2 .set 11 ; f3 = 11.25 KHz
nfreq3 .set 14 ; f4 = 14.32 KHz
nfreq4 .set 19 ; f5 = 19.43 KHz

* This section shows how to compute the coefficient “k_nblocks” which is
* multiplied by the 24 bit variable “Timer” (time for 720 ° crank angle)
* to determine the number of sample blocks to use for the current engine
* RPM. The calculation is defined below using example numbers:
*
*
*
* CNT2SEC 24
* K_NBLOCKS = REV2KNOCK * ––––––––––––––––––––– * 2
* (DFT_LOOP + DFT_CALC)
*
*
* WHERE:
*
* REV2KNOCK: Fraction of Combustion Cycle (720 deg) that knock window
* exists for a single cylinder.
*
* revprd 60 deg –2
* ––––––– * –––––––– = 8.33*10
* 720 deg knockprd
*

*
* CNT2SEC: Number of seconds per internal Timer count.

42

*
* 4 clkins/Tcnt –7
* –––––––––––––– = 1*10
* 40M clkins/sec
*
*
* DFT_LOOP: Number of seconds required for inner loop for given sample
* rate and sample block size.
*
* 44 samples 1 sec –4
* –––––––––– * ––––––––––– = 9.362*10
* 1 block 47K samples
*
*
*
*
* DFT_CALC: Number of seconds required to compute |DFT|^2 and select
* the largest value. This number is approximate and is
* determined experimentally. If the technique to calculate
* magnitude or select max value is changed the time required
* for this section should be checked and modified.
*
* 18 inst 5 freq 4 clkins/inst –6
* ––––––– * –––––– * –––––––––––––– = 9*10
* freq block 40M clkins/sec
*
*
*
*
* WHICH GIVES:
*
* –7
* –2 1*10 24
* K_NBLOCKS = 8.33*10 * ––––––––––––––––––– * 2 = 147.9
* –4 –6
* 9.362*10 + 9*10
*
*
KNBLOCK .set 148

* This section shows how to compute the coefficient ”delay_frac” which is
* multiplied by the 24 bit variable “Timer” to determine the number of
* internal timer counts required for the specified delay period between
* TDC and the beginning of the knock window. The example below is for a
* desired delay period of 9 °:
*
* 9 deg 15
* DELAY_FRACT = ––––––– * 2 = 409.6
 720 deg

DELAYFRACT .set 410

*––
*––
* DATA TABLE
* The sine table is a multiple of four long. When this
* configuration is used, the values at 0 °, 90 °, 180 °, and 270 °
* are included which gives more accuracy in the calculations
*
sintabl
 .word 00h
 .word 01238h
 .word 02410h
 .word 0352ch
 .word 04534h

43

 .word 053d2h
 .word 060bch
 .word 06baeh
 .word 0746eh
 .word 07ad0h
 .word 07eb2h
 .word 07fffh
 .word 07eb2h
 .word 07ad0h
 .word 0746eh
 .word 06baeh
 .word 060bch
 .word 053d2h
 .word 04534h
 .word 0352ch
 .word 02410h
 .word 01238h
 .word 01h
 .word 0edc8h
 .word 0dbf0h
 .word 0cad4h
 .word 0bacch
 .word 0ac2eh
 .word 09f44h
 .word 09452h
 .word 08b92h
 .word 08530h
 .word 0814eh
 .word 08000h
 .word 0814eh
 .word 08530h
 .word 08b92h
 .word 09452h
 .word 09f44h
 .word 0ac2eh
 .word 0bacch
 .word 0cad4h
 .word 0dbf0h
 .word 0edc8h
endtable

*––
*––
* GLOBAL VARIABLES
*
; DFT algorithm variables
; Knock detection algorithm variables
; Cylinder history variables

; BLOCK B2
; ––––––––
; These variables are used by the DFT algorithm and apply to all cylinders.
delay_frac .usect ”dft_vars”, 1
delay .usect ”dft_vars”, 1
flags .usect ”dft_vars”, 1
k_nblocks .usect ”dft_vars”, 1
metric .usect ”dft_vars”, 1
nblocks .usect ”dft_vars”, 1
ncyl .usect ”dft_vars”, 1
tablend .usect ”dft_vars”, 1
tdc#1 .usect ”dft_vars”, 1
temp .usect ”dft_vars”, 1
timer_hi .usect ”dft_vars”, 1
timer_lo .usect ”dft_vars”, 1

44

ADC_in .usect ”dft_vars”, 1
K .usect ”dft_vars”, 1
MAG .usect ”dft_vars”, 1
REF .usect ”dft_vars”, 1

; BLOCK B0 (DP=4)
; –––––––––––––––
;
; sinewave table

.bss sinewave, N

; Pointers for magnitude and detection algorithms
.bss c_pntr, nfreqs
.bss s_pntr, nfreqs
.bss r_sum, nfreqs
.bss i_sum, nfreqs
.bss tDFT, nfreqs
.bss DFT, nfreqs

; BLOCK B0 (DP=5) and BLOCK B1 (DP=6/7)
; –––––––––––––––––––––––––––––––––––––
;
; This memory section starts at 0280h and contains arrays
; for individual cylinder variables. Each cylinder requires
; the following arrays:
; K[nfreqs]
; REF[nfreqs]
; MAG[nfreqs*history]
; The magnitude array is organized as:
; +––––––––––––––––––––––
; | |history ––>
; |––––––+–––––––––––––––
; |nfreqs|
; | | |
; | v |
; |

cylinder .usect ”dft_array”, array_size

*––
*––
* MAIN FUNCTION
*

 .mmregs
Reset
; Disable all interrupts

ldpk 0 ;DP = mmregs data page
lack 0 ;Reset IMR bits to disable interrupts
sacl IMR

; Disable OVERFLOW mode (ACC won’t saturate)
rovm

; Setup P register shift mode
spm 1 ;Shift left 1 on PREG ==> ACC

; Enable sign extention mode
ssxm

; Init variables
ldpk delay_frac
lalk DELAYFRACT
sacl delay_frac
lalk KNBLOCK
sacl k_nblock
zac
sacl ncyl

45

; Init sine table and tablend pointer
ldpk sinewave
larp AR1
lrlk AR1, sinewave
rptk endtable-sintabl-1
blkp sintabl,*+
lalk sinewave
addk N–1
ldpk tablend
sacl tablend

; Init K[] array. This example uses same freq gain for each cylinder.
; In actual implementation all gains might be different.
;

lark AR0, nfreq–1 ;Init counter
lrlk AR1, cylinder ;Init cylinder pointer

repeat
larp AR1
lack K0 ;Init K[0]
sacl *+
lack K1 ;Init K[1]
sacl *+
lack K2 ;Init K[2]
sacl *+
lack K3 ;Init K[3]
sacl *+
lack K4 ;Init K[4]
sacl *+
adrk cyl_size -nfreqs,AR0 ;Point to K[] for next cylinder
banz repeat, AR1

:
:

Wait
b Wait ; Endless loop

*––
*––
* INTERRUPT SERVICE ROUTINES
*
*
*––
* INT0 ISR
*
* ISR INT0 is triggered by the ALL TDC signal. The software
* always initializes Timer 0 Interrupt after the engine
* RPM calc has stabilized (delay period needs to be known
* before DFT calcs started. If CYL=1 (ncly=0), then delay
* period and nblocks are updated, otherwise those blocks of
* code are bypassed.

; Determine if cylinder #1 by checking #1 TDC signal (LOW = yes).
; If yes, then read external timer to determine 720 ° period and
; run RPM adaptation routine.

in tdc#1, PA2 ; Read #1 TDC signal
bit tdc#1, 0fh ; Test for cylinder #1
bbnz not_#1 ; If no, skip delay/nblock calc

; Read 24 bit external timer to obtain combustion cycle period.
in timer_hi, PA3 ; Read upper byte of timer
in timer_lo, PA4 ; Read lower word of timer

; Delay count calculation
lt delay_frac
mpyu timer_lo

46

mpya timer_hi
sach temp
pac
add temp
sacl delay

; NBLOCKS calculation
spm 0
lt k_nblock
mpyu timer_lo
mpya timer_hi
sach temp
pac
add temp
sacl temp
lac temp, 8
sach nblocks
spm 1

zac ;Set ncyl=0
ldpk ncyl
sacl ncyl

not_#1
; Initialize pointers to cylinder arrays K[], REF[], and MAG[]

lalk cylinder ;ACC = cylinder address
spm 2 ;Setup for Q27 multiply
ldpk temp
lack nfreqs
sacl temp
lt ncyl ;Calculate offset for
mpyk cyl_size ; current cylinder
apac ;Compute K[] address
sach K
addh temp ;Compute REF[] address
sach REF
addh temp ;Compute MAG[] address
sach MAG
spm 1 ;Restore PM to Q30 multiply

; Zero DFT array for use in knock detection algorithm
lrlk AR0, DFT
larp AR0
zac
rptk nfreq–1
sacl *+

:
:

*––
* TIMER ISR
*
The TIMER ISR is triggered at the end of the on -chip timer count down period
(10 °CA). All DFT algorithm routines are run in this ISR. Communications of
knock intensity to ECU also occurs here.
*
tint

; disable Timer interrupt
ldpk 0
lac IMR
andk DISABLE_tint
sacl IMR

in ADC_in, PA0 ;Init ADC conversions

;START BLOCK PROCESSING

47

ldpk nblocks
lar AR4, nblocks ;Init block counter

blocks

;Zero real and imag sums
lrlk AR1, r_sum ;AR1 = real sum array
lrlk AR2, i_sum ;AR2 = imag sum array
lark AR3, nfreqs–1 ;AR3 = real/imag sum array counter
larp AR1
zac

zero
sacl *+, AR2 ;Zero real sum element
sacl *+, AR3 ;Zero imag sum element
banz zero, AR1 ;Check if done

;Init cosine/sine table pointers
lrlk AR1, c_pntr ;AR1 = cosine pointer array
lrlk AR2, s_pntr ;AR2 = sine pointer array
lark AR3, nfreqs–1 ;AR3 = cos/sin pntr array counter
larp AR2

setup
lalk sinewave ;ACC = start of sine table
sacl *+, AR1 ;Init sine pointer element
addk c_offset ;ACC = start of cosine table
sacl *+, AR3 ;Init cosine pointer element
banz setup, AR2 ;Check if done

lark AR3, N–1 ;Init sample counter
larp AR1 ;ARP = AR1 (cos table pointer)

;START DFT PROCESSING

dft
; The BIO pin is polled to determine when ADC conversion is complete.
; This can be used to eliminate interrupt latency. If knock detection
; is not implemented on dedicated processor, an interrupt could be used
; for this section of the calculations.
; backward

bioz forward ; If ADC complete continue
b backward ; else wait

forward

;Read latest measurement from Port 0. ADC input is left justified.
ldpk ADC_in
in ADC_in, PA0
lt ADC_in ;Load T reg with latest measurement

; Compute running DFT calculation. A different index is loaded into AR0
; for each frequency being monitored.

; Frequency 0
lark AR0, nfreq0 ;AR0 = freq0 index
lar AR1, c_pntr ;AR1 = freq0 cos table pntr
lar AR2, s_pntr ;AR2 = freq0 sin table pntr
mpy *0+, AR2 ;P = x*cos(freq0)
zalh r_sum ;ACC = real sum0
mpya *0+, AR1 ;P = x*sin(freq0) & accum real product
sach r_sum ;store updated real sum0
zalh i_sum ;ACC = imag sum0
sar AR1, c_pntr ;store freq0 cos pntr
sar AR2, s_pntr ;store freq0 sin pntr

; Frequency 1
lark AR0, nfreq1 ;AR0 = freq1 index
lar AR1, c_pntr+1 ;AR1 = freq1 cos table pntr
lar AR2, s_pntr+1 ;AR2 = freq1 sin table pntr

48

mpya *0+, AR2 ;P = x*cos(freq1) & accum imag product
sach i_sum+0 ;store updated imag sum0
zalh r_sum+1 ;ACC = real sum1
mpya *0+, AR1 ;P = x*sin(freq1) & accum real product
sach r_sum+1 ;store updated real sum1
zalh i_sum+1 ;ACC = imag sum1
Sar AR1, c_pntr+1 ;store freq1 cos pntr
sar AR2, s_pntr+1 ;store freq1 sin pntr

; Frequency 2
lark AR0, nfreq2 ;AR0 = freq2 index
lar AR1, c_pntr+2 ;AR1 = freq2 cos table pntr
lar AR2, s_pntr+2 ;AR2 = freq2 sin table pntr
mpya *0+, AR2 ;P = x*cos(freq2) & accum imag product
sach i_sum+1 ;store updated imag sum1
zalh r_sum+2 ;ACC = real sum2
mpya *0+, AR1 ;P = x*sin(freq2) & accum real product
sach r_sum+2 ;store updated real sum2
zalh i_sum+2 ;ACC = imag sum2
sar AR1, c_pntr+2 ;store freq2 cos pntr
sar AR2, s_pntr+2 ;store freq2 sin pntr

; Frequency 3
lark AR0, nfreq3 ;AR0 = freq3 index
lar AR1, c_pntr+3 ;AR1 = freq3 cos table pntr
lar AR2, s_pntr+3 ;AR2 = freq3 sin table pntr
mpya *0+, AR2 ;P = x*cos(freq3) & accum imag product
sach i_sum+2 ;store updated imag sum2
zalh r_sum+3 ;ACC = real sum3
mpya *0+, AR1 ;P = x*sin(freq3) & accum real product
sach r_sum+3 ;store updated real sum3
zalh i_sum+3 ;ACC = imag sum3
sar AR1, c_pntr+3 ;store freq3 cos pntr
sar AR2, s_pntr+3 ;store freq3 sin pntr

; Frequency 4
lark AR0, nfreq4 ;AR0 = freq4 index
lar AR1, c_pntr+4 ;AR1 = freq4 cos table pntr
lar AR2, s_pntr+4 ;AR2 = freq4 sin table pntr
mpya *0+, AR2 ;P = x*cos(freq4) & accum imag product
sach i_sum+3 ;store updated imag sum3
zalh r_sum+4 ;ACC = real sum4
mpya *0+, AR1 ;P = x*sin(freq4) & accum real product
sach r_sum+4 ;store updated real sum4
zalh i_sum+4 ;ACC = imag sum4
apac ;acc imag product
sach i_sum+4 ;store updated imag sum4
sar AR1, c_pntr+4 ;store freq4 cos pntr
sar AR2, s_pntr+4 ;store freq4 sin pntr

; Check for cosine/sine table pointer overrun
lac c_pntr ; Check freq0 cosine pointer
sub tablend
blez spntr0
adlk sinewave ; Adjust pointer if overrun occurs
sacl c_pntr

spntr0
lac s_pntr ; Check freq0 sine pointer
sub tablend
blez rpntr1
adlk sinewave ; Adjust pointer if overrun occurs
sacl s_pntr

rpntr1
lac c_pntr+1 ; Check freq1 cosine pointer
sub tablend

49

blez spntr1
adlk sinewave ; Adjust pointer if overrun occurs
sacl c_pntr+1

spntr1
lac s_pntr+1 ; Check freq1 sine pointer
sub tablend
blez rpntr2
adlk sinewave ; Adjust pointer if overrun occurs
sacl s_pntr+1

rpntr2
lac c_pntr+2 ; Check freq2 cosine pointer
sub tablend
blez spntr2
adlk sinewave ; Adjust pointer if overrun occurs
sacl c_pntr+2

spntr2
lac s_pntr+2 ; Check freq2 sine pointer
sub tablend
blez rpntr3
adlk sinewave ; Adjust pointer if overrun occurs
sacl s_pntr+2

rpntr3
lac c_pntr+3 ; Check freq3 cosine pointer
sub tablend
blez spntr3
adlk sinewave ; Adjust pointer if overrun occurs
sacl c_pntr+3

spntr3
lac s_pntr+3 ; Check freq3 sine pointer
sub tablend
blez rpntr4
adlk sinewave ; Adjust pointer if overrun occurs
sacl s_pntr+3

rpntr4
lac c_pntr+4 ; Check freq4 cosine pointer
sub tablend
blez spntr4
adlk sinewave ; Adjust pointer if overrun occurs
sacl c_pntr+4

spntr4
lac s_pntr+4 ; Check freq4 sine pointer
sub tablend
blez pntr_end
adlk sinewave ; Adjust pointer if overrun occurs
sacl s_pntr+4

pntr_end
banz dft,AR1 ; Go back if more samples

; end inner loop

;Compute magnitudes: tDFT
zac ;Clear ACC
mpyk 0 ;Clear P reg
sqra r_sum ;P = real0^2
sqra i_sum ;P = imag0^2 / ACC = real0^2

sqra r_sum+1 ;P = real1^2 / ACC = real0^2+imag0^2
sach tDFT ;Store |DFT0|
zac ;Clear ACC
sqra i_sum+1 ;P = imag1^2 / ACC = real1^2

sqra r_sum+2 ;P = real2^2 / ACC = real1^2+imag1^2
sach tDFT+1 ;Store |DFT1|

50

zac ;Clear ACC
sqra i_sum+2 ;P = imag2^2 / ACC = real2^2

sqra r_sum+3 ;P = real3^2 / ACC = real2^2+imag2^2
sach tDFT+2 ;Store |DFT2|
zac ;Clear ACC
sqra i_sum+3 ;P = imag3^2 / ACC = real3^2

sqra r_sum+4 ;P = real4^2 / ACC = real3^2+imag3^2
sach tDFT+3 ;Store |DFT3|
zac ;Clear ACC
sqra i_sum+4 ;P = imag4^2 / ACC = real4^2
apac ;ACC = real4^2+imag4^2
sach tDFT+4 ;Store |DFT4|

;Determine max magnitude: MAX(DFT,tDFT)
ldpk DFT
lac DFT ;ACC = DFT0
sub tDFT ;ACC = DFT0 – tDFT0
bgz max1 ;If DFT > tDFT, no change
lac tDFT ;Else DFT = tDFT
sacl DFT

max1
lac DFT+1 ;ACC = DFT1
sub tDFT+1 ;ACC = DFT1 – tDFT1
bgz max2 ;If DFT > tDFT, no change
lac tDFT+1 ;Else DFT = tDFT
sacl DFT+1

max2
lac DFT+2 ;ACC = DFT2
sub tDFT+2 ;ACC = DFT2 – tDFT2
bgz max3 ;If DFT > tDFT, no change
lac tDFT+2 ;Else DFT = tDFT
sacl DFT+2

max3
lac DFT+3 ;ACC = DFT3
sub tDFT+3 ;ACC = DFT3 – tDFT3
bgz max4 ;If DFT > tDFT, no change
lac tDFT+3 ;Else DFT = tDFT
sacl DFT+3

max4
lac DFT+4 ;ACC = DFT4
sub tDFT+4 ;ACC = DFT4 – tDFT4
bgz max_end ;If DFT > tDFT, no change
lac tDFT+4 ;Else DFT = tDFT
sacl DFT+4

max_end
larp AR4 ;Set ARP
banz blocks ;Go back if more blocks

; end outer loop

;Knock detection algorithm
lark AR0, 0 ; Init counter
ldpk DFT
lar AR1, DFT ; Point to magnitude array
ldpk REF
lar AR2, REF ; Point to reference array
larp AR1 ; Activate AR1

lac *+, AR2 ; ACC = DFT
sub *+, AR1 ; ACC = DFT–REF
blez dif1 ; Is DFT>REF?
larp AR0 ; Yes – increment counter
mar *+, AR1

dif1 ; No – test next frequency range
lac *+, AR2 ; ACC = DFT

51

sub *+, AR1 ; ACC = DFT–REF
blez dif2 ; Is DFT>REF?
larp AR0 ; Yes – increment counter
mar *+, AR1

dif2 ; No – test next frequency range
lac *+, AR2 ; ACC = DFT
sub *+, AR1 ; ACC = DFT–REF
blez dif3 ; Is DFT>REF?
larp AR0 ; Yes – increment counter
mar *+, AR1

dif3 ; No – test next frequency range
lac *+, AR2 ; ACC = DFT
sub *+, AR1 ; ACC = DFT–REF
blez dif4 ; Is DFT>REF?
larp AR0 ; Yes – increment counter
mar *+, AR1

dif4 ; No – test next frequency range
lac *+, AR2 ; ACC = DFT
sub *+, AR1 ; ACC = DFT–REF
blez dif_end ; Is DFT>REF?
larp AR0 ; Yes – increment counter
mar *+, AR1

dif_end ; No – save test results
sar AR0, metric

; If knock_flag set (revs > rev_count) then, the knock intensity metric
; is valid so output to ECU is enabled.

bit flags, 0fh ; Test knock_flag
bbz update ; Skip output if flag=0
out PA1, metric ; Output to ECU

; Reference adaptation if no knock occurred
update

lac metric ; Test for knock
bez done ; Skip reference update if knock occurred

; Copy measured magnitudes into history array in structure
larp AR1
lark AR0, history
lrlk AR1, MAG
rptk nfreqs–1
blkd DFT,*0+

; Move Mag[] elements back one time step in array for each frequency
; (must be onchip to use DMOV)

lark AR0, nfreq–1
lrlk AR1, MAG+(nfreqs*history–2)

move
rptk history–1 ;Move current frequency history
dmov *–
mar *– ;Setup for next frequency
mar *–
larp AR0
banz move, AR1 ;Check if done

; Compute new average magnitude (use power of two length: 4,8,16)
lrlk AR1, MAG ; Point to start of magnitude array
lrlk AR2, REF ; Point to start of reference array
lark AR3, nfreqs–1 ; Init frequency counter
larp AR1

average
zac ; Zero ACC
rptk history–1 ; Sum history of magnitudes
add *+, shift, AR2 ; w/ 1/history scaling for average
sach *+, AR3 ; Store average to REF array
banz average, AR1

52

; Scale average magnitudes to create new REF array. This technique
; assumes that K*REF<32767. If this condition is not met, then additional
; scaling must be done.

ldpk K
lar AR1, K ; Point to start of scale factor array
lar AR2, REF ; Point to start of reference array
lark AR3, nfreqs–1 ; Init frequency counter

scale
lt *+, AR2 ; T = K (scale factor)
mpy * ; P = K*REF (scaled ave)
spl *+, AR3 ; Store back to REF array
banz scale, AR1 ; Check for more

done
ldpk ncyl
lac ncyl ; Increment cylinder counter
addk 1
sacl nycl

eint ; and exit
ret

53

Index
A

adaptation strategy 12

adapting to operating conditions 12

analog filtering 3

analog-to-digital converter (ADC) resolution 16

B

block-size search software listing 23

broadband sensors 2

C

contamination of received signal 1, 13

control strategies 4

D

detection strategies 3
DFT detection strategy 4, 9

detonation 1, 3

DFT 4
advantages 5–7
sliding mode 8

DFT detection strategy 9

DFT signal conditioning algorithm 5
variables affecting 5

DFT versus digital filter 7

DFT versus FFT 6, 7

DFT versus FIR filter 7

digital filtering 3

direct measurement of engine knock 1

discrete Fourier transform 4
advantages 5–7

E

engine knock, definition 1

F

fast Fourier transform 3, 7

FFT 3, 7

finite impulse response (FIR) filter 7

fixed-point (TMS320C25) implementation 18
block diagram 19
software listing 40

floating-point (TMS320C30) implementation 16
block diagram 17
software listing 29

fN (Nyquist rate) 5
frequency selection in implementation 15
fundamental frequency, variables affecting 2

G
global knock control

advantage 4
disadvantage 4

Goertzel algorithm 8

I
implementation examples 13
indirect measurement of engine knock. See remote

measurement of engine knock
individual cylinder control

advantage 4
disadvantage 4

K
knock detection

algorithm adaptation 2
control strategies 4

global control 4
individual cylinder control 4

overview 2
strategies 3

knock detection algorithms, variables affecting 2–3
knock sensors, types 1

pressure sensors 1
remote sensors 1

knock window 3

M
magnitude detection strategies 9
misfire detection 21

N
Nyquist rate (fN) 5

54

P

performance differences between floating- and fixed-
point implementations 20

R

references 22

remote measurement of engine knock 1

remote measurement of knock detection, advan-
tages 2

remote sensors
broadband 2
tuned 2

resonant sensors 2

S

sample-rate search software listing 23

signal conditioning 3
with a broadband sensor 3

with a tuned sensor 3
with broadband sensor 5

analog filtering 3
digital filtering 3
spectral analysis 3

signal strength magnitude 7

spectral analysis 3

T

timing considerations in implementation 14

tuned sensors 2
limitation 2

V

variables affecting fundamental frequency 2

W

weighting coefficient in adaptive DFT computation
12

1

This template is for the “See” and “See also” references in your index. Since
these entries do not have a page number associated with them, it’s extremely
difficult to locate one if you need to modify or delete it and you don’t remember
which chapter it’s in. By using this template, you can alphabetize your entries ac-
cording to the first letter of the first level entry.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

2

T

U

V

W

X

Y

Z

